
www.manaraa.com

www.manaraa.com

Summary of Contents

Foreword: Web Services Business Strategies and Architectures 1

Chapter 1: Return On Investment (ROI) and Web Services 9

Chapter 2: Selling Web Services 25

Chapter 3: Enterprise Application Integration (EAI) and Web Services 39

Chapter 4: Business To Business Integration (B2Bi) and Web Services 57

Chapter 5: Integration Brokers and Web Services 71

Chapter 6: ERP and Web Services The Third Wave 85

Chapter 7: E-Logistics Processes Integration Using Web Services 101

Chapter 8: UDDI-based Electronic Marketplaces 117

Chapter 9: Web Services and the Real Estate Industry 143

Chapter 10: Business Process Standards For Web Services 157

Chapter 11: Web Services and Straight Through Processing (STP) 175

Chapter 12: Web Service Intermediaries 201

Chapter 13: An Introduction To ebXML 221

Chapter 14: Web Services Architectures 237

Chapter 15: .NET and J2EE, a Comparison 257

Chapter 16: Web Services and Application Frameworks (.NET and J2EE) 273

Chapter 17: Web Services Security 291

Chapter 18: Network Security for Web Services 305

Chapter 19: Remote References and XML Web Services 319

Index 333

www.manaraa.com

Web Services Business Strategies
and Architectures

Kapil Apshankar

HenryChang

Mike Clark

Eduardo B. Fernandez

Peter Fletcher

Whitney Hankison

J. J effrey Hanson

Romin Irani

Kunal Mittal

Judith M. Myerson

David O'Riordan

Dimple Sadhwani

Gunjan Samtani

Bilal Siddiqui

J0rgen Thelin

Mark Waterhouse

Chanoch Wiggers

Liang-Jie Zhang

APress Media, LLC

www.manaraa.com

Web Services Business Strategies and Architectures

© 2002 Apress
Originally published by Expert Press in 2002

AH rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the prior written permission of the

publisher, except in the case of brief quotations embodied in critical articles or reviews.

The authors and publisher have made every effort in the preparation of this book to ensure
the accuracy of the information. However, the information contained in this book is sold

without warranty, either express or implied. Neither the authors, Expert Press, nor its dealers
or distributors will be held liable for any damages caused or alleged to be caused either

directly or indirectly by this book.

EXPERT
Published by Expert Press Ltd,

Arden House, 1102 Warwick Road, Acocks Green,
Birmingham, B27 6BH, UK

ISBN 978-1-59059-179-6 ISBN 978-1-4302-5356-3 (eBook)
DOI 10.1007/978-1-4302-5356-3

www.manaraa.com

Trademark Acknowledgements
Expert Press has endeavored to provide trademark information about all the companies and
products mentioned in this book by the appropriate use of capitals. However, Expert Press
cannot guarantee the accuracy of this information.

Credits
Editors
Peter Fletcher
Mark Waterhouse

Contributing Authors
Kapil Apshankar
Mike Clark
Henry Chang
Eduardo B. Fernandez
Peter Fletcher
Whitney Hankison
]. Jeffrey Hanson
Romin Irani
Kunal Mittal
Judith M. Myerson
David O'Riordan
Dimple Sadhwani
Gunjan Samtani
Bilal Siddiqui
J 0rgen Thelin
Mark Waterhouse
Chanoch Wiggers
Liang:Jie Zhang

Assistant Editors
Kristin P<llsson
James Hart
Dan Robotham

Principal Reviewer
Mark Horner

Technical Reviewers
Kapil Apshankar
Mike Clark
Romin Irani
Andrew Krowczk
Saurabh Nandu
Chanoch Wiggers

Production Coordinators
Rachel Taylor
Pip Wonson

Index
Bill J ohncocks

Illustrations
Rachel Taylor
Pip Wonson

Production Assistant
Helen Pickering

Proof Reader
Agnes Wiggers

Cover
Dawn Chellingworth

The image used on the cover is a design for the Business Promotion Centre, Duisburg, Germany.
Used with the permission of Foster and Partners Architects.

www.manaraa.com

About the Authors

Kapil Apshankar
Kapil has three years experience in knowledge management, il8n, LIOn, and manufacturing
domains. He works as a team leader for a major software corporation in India. Currently he is
working with Web Services in all their forms to devise ways and means to take this nascent
technology to its limits.

His other interests include Linux, networking, and distributed computing. When not dabbling
with his computer, he can be seen playing the harmonica or drawing pencil portraits. Kapil
can be reached at kapilapshankar@yahoo.co.in.

Mike Clark
Mike is currently working solely on Research and Development around Web Services and
ASP.NET technology. He is solely responsible for www.salcentral.com, the world's first Web
Services brokerage along with www.webservicebuy.com, www.uddiregistrar.com and a suite
of Web Services available at www.soapengine.com. All his spare time is taken up with his
wife and two kids, though it's seldom enough to stop the feeling of guilt for the time spent
"playing in the attic" as the kids call it.

You can contact Mike Clark at mikec@lucin.com.

Henry Chang
Dr. Henry Chang is a research manager of B2B service infrastructure in the IBM Watson
Research Center. He has developed IBM's B2B extranet web portal. He is now leading
research in the areas of web business services integration, business process solution
management, and on-demand e-utility hosting infrastructure.

Eduardo B. Fernandez
Eduardo B. Fernandez (Eduardo Fernandez-Buglioni) is a professor in the Department of
Computer Science and Engineering at Florida Atlantic University in Boca Raton, Florida. He
has published numerous papers on authorization models, object-oriented analysis and design,
and fault-tolerant systems. He has written three books on these subjects. He has lectured all
over the world at both academic and industrial meetings. He has created and taught several
graduate and undergraduate courses and industrial tutorials. His current interests include
object-oriented design and Internet security. He holds a MS degree in Electrical Engineering
from Purdue University and a Ph.D. in Computer Science from UCLA. He is a Senior
Member of the IEEE, and a Member of ACM. He is an active consultant for industry,
including assignments with IBM, Allied Signal, Motorola, Harris, Lucent, and others. More
details can be found at http://www.cse.fau.edu/-ed.

www.manaraa.com

Peter Fletcher
Peter Fletcher is Managing Editor of Web Services Architect
(http://www.webservicesarchitect.com/). Previously he developed web-based applications for
the publishing group Peer Information, including content management and e-commerce
systems. He holds a Masters degree in Cognitive Science.

Whitney Hankison
Whitney is a Systems Analyst with the County of Santa Barbara, California, USA. She has co
authored Professional Windows DNA, and Professional VB .NET 1st and 2nd editions with Wrox
Press. She can be reached at whankison@earthlink.net.

J. Jeffrey Hanson
Jeff Hanson has more than 18 years of experience in the software industry, including working
as Senior Engineer for the Windows OpenDoc port and Lead Architect for the Route 66
framework at Novell. He is currently Chief Architect for Zareus, Inc., which specializes in
providing Web Service frameworks and platforms for J2EE-based installations. Jeff has also
authored numerous articles.

Romin Irani
Romin Irani is a Senior Software Engineer at InSync Information Systems, Inc. in Fremont,
California. His primary job focus is on utilizing Web Services Technologies to help ease
Enterprise Application Integration (EAI). Prior to that, he was the team leader on aj2EE
based eProcurement Marketplace. Romin has 7 years of professional experience with the last
4 years completely focused aroundj2EE. Romin has contributed several articles in the field of
Web Services and has been a co-author of the following books: AXIS: The Next Generation of
java SOAP, Professional]ava Web Services, and Beginning]SP Web Development, all published by
Wrox Press.

Kunal Mittal
Kunal Mittal (kunal@ kunalmittal.com) is a Technical Architect at Infosys Ltd, Pune, India
specializing in Service Based Architectures usingjava-based Web Services. Kunal would like
to thank Doron Sherman, CTO, Collaxa and Dave Shaffer, Principal Consultant, Collaxa for
their contributions to the case study presented in this paper (http://www.collaxa.com/).

www.manaraa.com

Judith M. Myerson
Judith M. Myerson is a Systems Engineer/ Architect with a Master's Degree in Engineering. A
noted columnist and writer with over 150 articles/reports published, she is the editor of
Enterprise Systems Integration, Z'd Edition, and the author of The Complete Book of Middleware, and
articles in New Directions in Internet Management - all by Auerbach Publishers. In addition to
Web Services, her area of interest covers enterprise-wide systems, databases, enabling
technologies, application development, network management, distributed systems,
component-based technologies, and project management among others. She can be reached at
jmyerson@ bellatlantic.net.

David 0' Riordan
David O'Riordan (dave@bindsys.com) is co-founder and Chief Architect at Bind Systems
(http://www.bindsys.com/) who provide business process software products based on Web
Services standards. He has 15 years experience of designing enterprise software systems at
companies such as Siemens and IONA Technologies. Before founding Bind Systems in 2000,
he was the product architect of the Java CORBA product line at IONA Technologies.

Dimple Sadhwani
Dimple Sadhwani is Senior Software Engineer at Island ECN based in New York. She has
many years of experience working for financial and telecommunication companies on large
scale trading systems, CRM applications, Internet/Intranet portals, and client/server
applications. She is co-author of the book B2B Integration - A practical guide to collaborative e
commerce, Imperial College Press. She has also authored several articles in the field of Web
Services. Her e-mail address is dsadhwani@ island.com.

Gunjan Samtani
Gun jan Samtani is Divisional Vice President, Information Technology at UBS Paine Webber,
one of the world's leading financial services firms. He has several years of experience in the
management, design, architecture, and implementation of large-scale EAI and B2B integration
projects. He is the primary author of B2B Integration - A practical guide to collaborative e
commerce, Imperial College Press. He has presented research papers at several national and
international conferences and is the author of more than 100 articles and research publications
in the field of finance and technology. His e-mail address is gsamtani@ubspw.com.

www.manaraa.com

Bilal Siddiqui
Bilal Siddiqui is an Electronics Engineer, an XML consultant, and the co-founder of W axSys,
a company focused on simplifying e-Business. After graduating in Electronics Engineering
from the University of Engineering and Technology, Lahore, in 1995, he began designing
software solutions for industrial control systems. Later he turned to XML and used his
experience programming in C++ to build Web- and W AP-based XML processing tools,
server-side parsing solutions, and service applications. He is a technology evangelist and a
frequently published technical author.

Jergen Thelin
j0rgen Thelin is the Chief Architect at Cape Clear Software Inc. where he is responsible for
the overall technical direction of the company's flagship Cape Connect Web Services
Integration Platform product. Previously, he has worked on the development of a number of
middleware products and major line-of-business software projects for blue-chip companies
such as ICL, Reuters,J.P.Morgan, and BSkyB before joining Orbware to develop an
enterprise server middleware product. He holds a Computing Science Honours degree from
Stirling University, Scotland, and an MBA from Warwick Business School, England. He has
been using the Java programming language since early 1996, and is a Sun CertifiedJava
Programmer, Developer, and Architect.

Mark Waterhouse
Mark Waterhouse has been a technical editor for a little over two years. Having initially
worked for Wrox Press, he moved to Teet where since September 2001 he has edited the Web
Services Architect web site (http://www.webservicesarchitect.com/) and associated papers.
Before working, Mark was a volunteer advisor for the Citizen's Advice Bureau, and has
studied Philosophy (BA) and Cognitive Science (MSc).

Chanoch Wiggers
Chanoch is a Software Developer at Kiwi Media Design having left Wrox Press from his
position as Editor. In addition to having been the architect of Professionaljava SOAP and
Professional]ava Web Services, he has written for a number of articles and books published by
Wrox Press and the Web Services Architect web site. You can contact him at
chanochwiggers@ hotmail.com.

Liang-Jie Zhang
Dr. Liang:Jie Zhang is a Research Staff Member at IBM's T J. Watson Research Center, where
he has been actively working on B2B integration using Web Services. He is the lead author of
Business Explorer for Web Services (BE4WS). His other research interests include Web
Services-oriented business process outsourcing technologies and broadband-media commerce.
He chaired the special session on Web Services at IC2002.

www.manaraa.com

www.manaraa.com

Table of Contents

Foreword: Web Services Business Strategies and Architectures

What Are Web Services?
Do They Mean Business?
What Web Services Are Not

Why Web Services Are Important
Financial Imperatives
Strategic Imperatives
Structural Imperatives

How Web Services Do All This

Resources

Chapter 1: Return On Investment CROll and Web Services

Defining Return On Investment (ROI)
An Example of ROI Calculation

ROI Analysis
Discounted Cash Flow Analysis
Payback Period Analysis
ROI Analysis Becoming a Necessity

ROI and Web Services
ROI Not Just About Technology

Calculating ROI of Web Services
Factors to be Included in ROI Calculation
Applying the ROI Formula
Not the Only Model

Conclusion

Chapter 2: Selling Web Services

What's So Special About Web Services?

How do Web Services Benefit Development?

Point by Point Examination of Web Services

1

1
2
3

3
4
4
5

5

7

9

9
10

10
11
11
12

12
12

13
14
20
22

22

25

26

26

27

www.manaraa.com

Table of Contents

Threats to Web Services' Rise to Power
ASP or Not ASP?
Let Them Be Free
Customer Trust
Dependent on Microsoft's New Software (a.k.a .. NET)
Charging Mechanism
It's Just Another Standard; I'll Wait for the Next One?
What Type of Companies Will Form Around Web Services?
Web Services Development
Hosting of Web Services
Testing Labs
Web Services Brokerages
Web Services Toolkit Developers

Conclusion

Chapter 3: Enterprise Application Integration <EAil and Web Services

Enterprise Application Integration (EAI)
What is EAI?
Types of EAI

Service-Oriented Architecture (SOA)
Components and Operations of SOA

Web Services

EAI and Web Services
Salient Differences between Traditional EAI Solutions and Web Services
Example of Web Services for EAI
Essential Features of a Web Services Framework
Convergence of EAI Solutions and Web Services

Where to Start?
Taking Advantage of Existing Assets
Build an Internal Repository for Web Services
ROI on Using Web Services for EAI
Bottom Line

Conclusion

Chapter 4: Business To Business Integration (B2Bil and Web Services

ii

What Is 828 Integration (8281)?

An Intimidating Task

Essential Features of a 828 Integration Solution
Conventional B2Bi Patterns
Factors Involved in Your Choice of Integration Pattern

The Role of Extensible Markup Language (XML) In 8281
Web Services and B2Bi
Web Services Networks

Conclusion

29
29
30
31
32
32
33
34
34
35
35
35
36

36

39

40
41
41

44
45

46

46
47
48
49
50

52
52
53
53
53

54

57

57

59

59
60
62

63
64
66

68

www.manaraa.com

Chapter 5: Integration Brokers and Web Services
Integration Brokers Enable a Best-of-Breed (BOB) Approach

Architecture of Integration Brokers
Hub-and-Spoke Architecture
Message Bus Architecture
Multi-Hub Architecture

Services of Integration Brokers
Enable All Types of Integration
lnteroperability
Open Architecture
Support for All Communication Protocols
Directory Services
Trading Partner Management and Personalization

Security
Scalability

Transactional Integrity

Web Services
Will Web Services Become Just Another Service of Integration Brokers?

Easy Connectivity with Third-Party Web Services Solution
An Example of Integration Brokers and Web Services

Existing Integration Broker Infrastructure and Web Services

Conclusion

Chapter 6: ERP and Web Services The Third Wave

Introduction
The Business Drivers Behind ERP
The Journey So Far
ERP Implementation Methodology
Why ERP and Web Services?

How Do Web Services Make ERP Easier?
Current Scenario
Technology Issues
Web Services-ERP based model: Architecture for Information Integration/Exchange
Web Services-ERP based model: Architecture for the Hosted Application Model

Comparison
Beneficiaries of ERP Web Services
Economics of ERP Web Services
Interrelation
The Road Ahead

Conclusion

Table of Contents

71
72

72
72
73
74

75
75
75
75
76
77
77
77
77
77

78
78
79
80
81

82

85

85
86
87
88
89

91
92
94
94
96
96
97
98
98
99

99

iii

www.manaraa.com

Table of Contents

Chapter 7: E-Loglstlcs Processes Integration Using Web Services

E-Loglstlcs Processes Integration
ELPIF Components and Services

E-Loglstlcs Example: UPS Integration

A Working B2B System Using ELPIF

Conclusions

Chapter 8: UDDI-based Electronic Marketplaces

Some Common Requirement of All E-commerce Models
Content Management

lnteroperability in E-Commerce
Supply Chain Management Solutions as a Special Case of e-Commerce

What Is a UDDI-based eMarketplace?
How Customers and Businesses Participate in a UDDI based eMarketplace

How Can We Start a UDDI-based eMarketplace?
What Is the Role of UDDI in Our eMarketplace?
What Is the Role of Web Services Definition Language (WSDL) in an eMarketplace?

Architecture of a UDDI- and WSDL-based eMarketplace
UDDI is Very Good, But it is Not Enough for an eMarketplace.

How WSDL Servers Work: Where Will a WSDL/SOAP Server be Located?

lnteroperablllty In SOAP
Responsibilities of SOAP in Our UDDI-based eMarketplace

How Our SOAP Client Will Work with the SOAP Servers of eSuppliers (SOAP lnteroperability)

How Will Businesses Get Involved in Our eMarketplace?

How Do UDDI and WSDL Bring Down the Cost of B2B Integration?
Mechanism for Publishing at Our UDDI-based eMarketplace

Common Business Protocols and Practices
Advantages of Common Business Protocols
How To Publish Fingerprints at a UDDI Registry

The Next Generation Dot Com

A Pragmatic Approach To UDDI-based eMarketplaces

Conclusion

Chapter 9: Web Services and the Real Estate Industry

lv

Technological Challenges Faced By the Real Estate Industry

Shortcomings of Current Technologies

Benefits from Web Services
Business Drivers
Technical Drivers

101

103
104

107

111

115

117

118
118
119
119

121
121

122
124
124

125
126
128

131
132
132
133

134
134

136
137
137

139

139

140

143

144

146

146
147
147

www.manaraa.com

Table of Contents

Web Services Technologies
Dynamic Discovery Using UDDI
Message Exchange Using SOAP
Defining Contracts Using WSDL

Case Study
Problem Description
How Can This be Implemented?

Conclusion

Chapter 10: Business Process Standards For Web Services

The Need for Business Process Standards

B2B and EAI Processes

Business Process Features

The Web Services Stack

The Candidates
ebXML BPSS
XLANG
WSFL
BPML

Convergence

OMG EDOC

Conclusion

Chapter 11: Web Services and Straight Through Processing CSTPl

What Is Straight Through Processing (STP)?
The Need for STP
The Drivers and Benefits of STP
The Current State of Technology Supporting STP
STP Encompasses EAI and B2Bi
STP Involves Business Process Management (BPM)
Critical Parameters of STP

Application of Service-Oriented Architecture (SOA) -based Framework to STP
The solution

Why Use Web Services for STP?

An Example Usage of Web Services for STP
Matching Utility Description
An Example Business Process
The Use of Web Services
Advantages of Web Services Over the Current Implementation

Where To Start?

Conclusion

148
149
149
149

150
150
154

155

157

158

159

159

161

162
162
165
167
168

170

171

172

175

176
176
177
178
178
180
181

183
184

184

190
190
191
192
195

197

198

v

www.manaraa.com

Table of Contents

Chapter 12: Web Service Intermediaries

What Is a Web Service Intermediary?
Intermediary Services
High-Level Web Service Intermediary Architecture
Web Service Intermediary Issues
Standards and Web Services Networks

The Birth of the UDDI Value Added Service Supplier
The VASS Business Plan
Who Pays the VASS?

Business Architecture for a Web Services Brokerage
Creation
Publication
Promotion
Selling

Conclusion

Chapter 13: An Introduction To ebXML

Introduction

Need for a Global Electronic Business Standard
State of Things Today
Advantages of Having a Global Standard
What Should a Global Electronic Business Standard Consist of?

The ebXML Standard
How ebXML Works
What ebXML Does Not Address

Current Industry Support

Accelerating ebXML - The Role of Web Services
Web Services - Benefits
Web Services - Current issues
Current Landscape

Relationship Between Web Services and ebXML (Implementation Phase)

Conclusion

Chapter 14: Web Services Architectures

vi

WebServlces.Org

The Stencil Group

IBM

W3C

Microsoft

201

201
202
205
205
206

207
207
211

212
214
215
216
217

218

221

221

222
222
223
223

224
224
227

227

229
231
231
232

232

235

237

238

241

242

243

245

www.manaraa.com

Sun Microsystems

Oracle

Hewlett-Packard

BEA Systems

Borland

Conclusion

Chapter 15: .NET and J2EE. a Comparison

Introduction

Web Services Overview
Service Description
Service Implementation
Service Publishing, Discovery, and Binding
Service Invocation and Execution

Time To Choose

Conclusion

Table of Contents

247

249

253

253

254

255

257

257

258
259
261
263
264

267

270

Chapter 16: Web Services and Application Frameworks (.NET and J2EEl 273

Flavors Of Application Frameworks
Microsoft .NET Framework
Java 2 Platform, Enterprise Edition (J2EE) Framework

Web Services: All About lnteroperability
Classification of Web Services
Application Frameworks and Web Services
Microsoft .NET
Java 2 Platform, Enterprise Edition (J2EE)
Differences Between J2EE and .NET Frameworks for Web Services Support

How To Choose an Application Framework for Web Services
The Ten Most Important Deciding Factors

Application Servers and Packaged Application Providers
A Word of Caution

An Example of Application Servers and Web Services

Conclusion

Chapter 17: Web Services Security

The Web Service Levels

The Communications Level

274
275
276

277
277
278
279
279
280

283
283

286
286

286

288

291

293

295

vii

www.manaraa.com

Table of Contents

Web Services Framework Providers
IBM Web Services
Microsoft .NET
Sun Microsystems
Hewlett Packard
BEA Systems
web Methods

Web Services Providers
Microsoft's .NET My Services (Formerly code-named HailStorm)
Bowstreet
SAP

Security products
Netegrity
Securant
Oblix
Grand Central
Quadrasis
WSBANG (Web Services Broker and Network Gateway)

The Supporting Levels

Conclusions

Chapter 18: Network Security for Web Services

Strategy Overview
Physical Security
Identity Security

Patches and Security Guidelines
Microsoft-Specific Information
Other Helpful Web Sites for Security and Virus Information
Additional Security Software

Security Infrastructure Components
Network Configuration
Program Deployment Infrastructure
Monitoring and Auditing

Security Configuration Alternatives
Certificate Security
Global Cache Security
Custom Security

Business Strategies

Conclusion

viii

296
296
296
296
297
297
297

297
298
298
298

298
298
299
299
299
299
299

300

301

305

305
306
306

308
308
308
309

309
310
312
312

313
313
314
314

315

317

www.manaraa.com

Chapter 19: Remote References and XML Web Services

What Are "Remote References"?
Distributed Object Technology
Definition of the Term Remote Reference
Examples of Remote References from Existing Middleware
Typical Uses of Remote References

Remote References and Web Services
Applying Remote Reference Principles to Web Services

lnteroperablllty Considerations
Language lnteroperability
Web Service lnteroperability
WSDL lnteroperability

Minimizing Problems with Remote References

Conclusions

Index

Table of Contents

319

319
320
321
322
324

326
326

328
328
328
329

329

330

333

ix

www.manaraa.com

www.manaraa.com

Web Services Business Strategies
and Architectures

What is this book about? It's about Web Services, it's about business strategies, and it's about
architectures. This collection of papers aims to shed light on the impact of Web Services on an
organization and its functional processes. Consequently, we do not become embroiled in a
technical discussion of programming implementation details, instead taking an architectural
view of the subject. If you need to know what Web Services are in more general terms,
without seeing actual implementations - why and how they might have a role to play in your
business - then this is the book for you. It is therefore aimed as much at IT managers and
business decision makers as it is at systems architects and lead developers with an eye for the
bigger picture.

What Are Web Services?
Not too long ago, a few XML-based standards for passing information over the Internet
were brought together and began to be touted as the Next Big Thing. In a way, they are,
although Web Services have undoubtedly received more than their fair share of hype. So,
what's all the fuss about? The basic premise behind Web Services is that a piece of code is
made available to remote machines, using specific protocols, over the Internet. The Service
part of Web Services relates to the idea of providing access to functionality without having
to download or install the code, and the Web part refers to the means through which the
functionality is accessed.

The three component standards of Web Services are the Simple Object Access Protocol
(SOAP), Universal Description, Discovery and Integration (UDDI), and Web Services
Description Language (WSDL.)

www.manaraa.com

Foreword

SOAP provides the first piece of the puzzle: a means for one piece of code to communicate
with another piece of code. The important thing about SOAP is that it enables communication
across all languages (from java to Visual Basic, say), and doesn't come in different versions for
connecting different pairs of languages. The same SOAP message should work as well
betweenjava and Visual Basic as it does between C++ and Perl. This language independence
means that a Web Service implemented in one language can be accessed by several languages
through one interface.

UDDI describes a registry in which Web Services can be advertised. The initial idea was that
the details of a required Web Service would be discovered dynamically, shortly before it was
to be used. Although technically possible, this remains an unlikely situation for a number of
reasons, including the speed of the discovery process, the need for trust, and the quality of the
data in the UDDI registry. What is more likely to happen is that a potential subscriber to a
Web Service would find details of interesting Web Services in the UDDI registry, and then
contact the providers of those services in a more conventional way before attempting to use
any service. Once a relationship has been established between the subscriber and the
provider, business would continue as normal.

WSDL is the XML-based format in which a publisher describes their Web Service. An entry
in a UDDI registry would point to a WSDL file, which would supply important details about
the service. These details would include the name of the service, any parameters that must be
passed to it, and what form the response will take.

Do They Mean Business?

2

So much for the technology behind Web Services, but what is the business perspective? Web
Services can be pictured as a relationship between a service provider and a service consumer,
or publisher and subscriber. The service provided can be either functionality (all manner of
calculations), or data access (providing a regulated view of any repository of data). The
provider and consumer could well be within the same company, since Web Services
potentially enable a rapid application development solution to integration problems.
Alternatively, Web Services could be used to integrate systems between trusted partner
companies.

Web Services are a way to drive down costs by reducing data and functionality duplication
within an organization. Rather than having three departments running three different
packages to do the same job because they're all using different systems, the functionality can
be centralized and accessed as Web Services, regardless of the platform each department uses
for its own needs. Web Services are also a way to drive up income, by allowing an
organization to market their previously purely internal functionality to a wider audience. If
part of your system does a good job of providing a certain type of valuable information in a
timely manner, it could be a candidate for exposure as a Web Service so that it can be
marketed as a service to other companies.

www.manaraa.com

Foreword

What Web Services Are Not
It is worth briefly noting what Web Services are not, as there is a tendency among some
sources to get carried away and not look at the limitations.

First and foremost, Web Services are not a magic solution to all your IT problems (neither will
they do your laundry). There is often a tendency for people to think that a new technology
will solve their problem, when in fact they don't have the problem clearly defined in the first
place. Web Services may not be appropriate for your situation, either now due to lack of
maturity, or in the future because the nature of the problem is such that it can't be solved by
what is essentially remote procedure calling, over Internet protocols.

Web Services are not a strategy in their own right, neither will they make a bad business
model any better, nor even provide the answer to fast-tracking new business relationships.
Web Services are a tool, to be employed as part of an overall strategy - a new technology
shouldn't make you change your business strategy just because a few magazines and
commentators say so. Web Services shouldn't be employed because they're the hot new thing,
but instead because they're the right choice for your existing strategy. If your strategy or
business model isn't very go·od, there's little chance that using Web Services will make it
better- they might, but it's not guaranteed. Regardless of how fast and easy it is to find
potential service providers, trust and reliability are still prime concerns that Web Services
have yet to solve convincingly.

Web Services are not free. This may come as a surprise to some, but implementing Web
Services will be like implementing any new technology. There will be costs at the start, both in
time and money, but they will be less than for many new technology projects. The maintenance
costs, however, should be less than for a similar project undertaken with other technologies.

Web Services are not an automatic marketplace-building tool. Although they can make such
building easier, work still needs to be done.

Web Services are not an operating system, and they do not exist in a vacuum. Web Services
need to work with other systems, and they don't do this without some effort. The effort is
relatively small, but it must still be made.

Why Web Services Are Important
As we've seen, Web Services are many things to different people, and because of these varied
applications they are important in several ways. There are three areas in which Web Services
can become important to an organization, as follows:

0 Financial Imperatives.

0 Strategic Imperatives.

0 Structural Imperatives.

3

www.manaraa.com

Foreword

Financial Imperatives
The importance of money is something that is not lost on most people, although we all wish we
had more to spare. Web Services have the potential to free up money within an organization, by
driving down integration costs, reducing expensive functionality duplication, and providing new
revenue streams from existing functionality or data. At least, that's what people say, but how
accurate is this rosy picture of Web Services, and how far away is its realization?

As with all new technologies, people make bold claims about Web Services in an effort to get
them adopted more quickly. The hope is that reality will be brought into line with the vision,
so that the vision is proved right. This means that for the early adopters of Web Services the
results may not be as dramatic as the vision would claim. As implementations of the
technology catch up with the vision, so will the cost reductions. Even so, Web Services are
being adopted by large organizations, such as French institutional and corporate bank CDC
(Caisse des Depots et Consignations, http://www.caissedesdepots.fr/). According to an article
on Line56.com (http://www.line56.com/articles/default.asp?Articlel0=3702), CDC are an
advanced client of Mercator (http://www.mercator.com/) for integration using Web Services.
The reasons behind the need for integration are common amongst growing organizations,
namely several business units using different systems.

Web Services are also being adopted to provide new revenue. Lloyds TSB Commercial Finance
(http://www.ltsbcf.eo.uk/) have exposed their credit rating facilities as Web Services, another
move reported by Line56.com (http://www.line56.com/articles/default.asp?Newsl0=3360).
This Web Service, which replaces the old manually requested version, is largely made possible
through use of Microsoft's BizTalk Server. As well as improving the number of requests they can
handle (only exceptions are dealt with manually), the service is a product in its own right, and is
frequently used by other divisions of the company.

Strategic Imperatives

4

As well as improving the financial position of an organization by reducing costs and
increasing revenue, Web Services can have a beneficial impact on strategy. Web Services
could provide smaller organizations with an affordable means to access functionality or data
in a form more readily useable by their internal systems. This means that, as the costs
involved would be less than those of attempting to acquire the same functionality using
proprietary means, it is more reasonable for an organization to incorporate the functionality
into its own systems. The reduction in costs, both financial and time, allows the company to
focus on other issues.

On the other side of the coin, organizations publishing Web Services have an increased range
of services they can sell, to an increased range of potential customers. By exposing the
information in a standard manner, there is no restriction on the customer to use a particular
system, allowing the publisher to sell to smaller organizations. As well as being able to sell
more functionality to more people, Web Services provides a cheaper and more efficient
distribution channel, increasing the attractiveness of the proposition.

www.manaraa.com

Foreword

Finally, because Web Services make it easier to subscribe to functionality provided by
external agencies, outsourcing that functionality and data management to expert companies
becomes much more viable for the smaller business. Having externally provided functionality
and data management further allows the organization to focus on strategy.

Structural Imperatives
Hand in hand with reshaping strategy is realigning structure, and the adoption of Web
Services may increase the desirability- if not the necessity- of restructuring. For example, if
we consolidate financial reporting to a head-office-based Web Service, this may well imply the
need for a reorganization of the company's finance departments. Since this restructuring could
mean a reduction in staff, the system would become more efficient by giving the same results
with fewer resources. This streamlining of departments, by centralizing functionality without
reducing its accessibility, means that an organization can become leaner and more flexible
through increased access to functionality and data.

Using Web Services to provide functionality from a central location would also allow work to
become less location-dependent. If the principal functionality a worker depends on to do their
job is accessible over the Internet, then the work can be carried out wherever the Internet can
be accessed from (almost anywhere, these days). Equally, it means that the work can be
consolidated into fewer locations, further streamlining the organization.

How Web Services Do All This
Web Services, if viewed from a certain angle, can seem like the solution to all our integration,
outsourcing, restructuring, and financial problems. As we've already seen, they're good but
not that good, although they can provide many benefits. The key question, that the papers
collected here aim to answer is how?

Ranging from business issues to the more technology-based papers, this collection is not
intended to be read in sequential order, hence the papers are not numbered. Despite this, the
earlier papers tend to be more business-oriented than the later ones, which focus on the more
obviously technology-based aspects of Web Services.

We begin with a look at the all-important Return on Investment (ROI). Here, Gunjan Samtani
and Dimple Sadhwani examine how Web Services will provide a substantial ROI for most
companies. The focus is on how to work out what the ROI will be for your company if you
plan to use Web Services.

Next up, Mike Clark takes us through the things we need to know about Web Services if we're
thinking about selling them to other people. Equally, the information is useful if you're
thinking about buying Web Services - pointers to what to look for in a company proposing
Web Services.

5

www.manaraa.com

Foreword

6

The next three papers form a small trilogy with each one focused a different aspect of
integration. Gunjan Samtani and Dimple Sadhwani take time to acquaint us with Enterprise
Application Integration (EAI), Business-to-Business Integration (B2Bi), and Integration
Brokers. In each instance, we examine how Web Services can make the task easier and
cheaper. These three papers form the key to understanding how Web Services can improve
the financial situation of a company, become strategically important, and allow structural
freedom not previously available.

One of the other mainstays of enterprise computing is Enterprise Resource Planning (ERP).
Kapil Apshankar discusses ERP and how Web Services can be used to streamline the
processes involved, and looks at how some of the major ERP software vendors are moving
towards Web Services-enabled applications.

Another important use for computers in the enterprise is the automation of logistics processes.
Liang:Jie Zhang and Henry Chang present the outlines of an E-Logistics Process Integration
Framework, explaining how Web Services can be used to increase speed and efficiency.

Another integration-based application for Web Services, specifically UDDI, is that of an
Electronic Marketplace. Bilal Siddiqui takes us through using UDDI and WSDL to streamline
the operations of an electronic marketplace beyond the benefits already provided by these
portals.

It isn't just business in general that can benefit from Web Services, as Kunal Mittal shows with
a look at Web Services and the Real Estate industry. Although aimed at a specific vertical
industry, the lessons to be learned from this paper can easily be extrapolated to similar areas.

As a herald of things to come later in the collection, David O'Riordan looks at emerging
Business Process Standards for Web Services. Without an efficient way of organizing
workflow, important business processes could easily occur out of sequence. Fortunately, there
are supporting proposed standards that will provide much-needed control of workflow if Web
Services are to become serious candidates for application provision.

Web Services are an ideal candidate for helping to introduce new systems and processes, as is
the case with Straight Through Processing (STP). Gunjan Samtani and Dimple Sadhwani
examine the impact that STP promises to have on the financial services industry, focusing on
how Web Services could be used to introduce this important concept.

Although the majority of Web Services discussed in the papers are influenced by two
principal parties (the publisher and the subscriber), there is always room for a middleman.
Mike Clark and Romin Irani look at the opportunities that Web Services provide for the
existence of such Intermediaries, how they would work and make money, and a closer
examination of a particular type, the Web Services Broker.

www.manaraa.com

Foreword

Web Services (in the guise ofWSDL, UDDI, and SOAP) are not the only XML-based
standards that can make electronic business easier. Romin Irani presents an Introduction to
ebXML, which includes an exploration of how Web Services can be combined with ebXML
(and vice versa).

The final third of the collection is more oriented towards explaining the technologies and
architectures involved in Web Services. Judith M. Myerson kicks this section off with a look at
the leading Web Services Architectures, encompassing offerings from the principal vendors
and commentators.

Even though Web Services are touted as platform-and language-neutral, they still need to be
implemented somewhere, which brings us to one of the largest sources of contention - .NET
or J2EE?].Jeffrey Hanson compares the two leading competitors' offerings for implementing
and invoking Web Services, with additional material from Chanoch Wiggers.

In a similar vein is Gunjan Samtani and Dimple Sadhwani's Application Frameworks. Like
the previous paper, the focus is split between .NET andJ2EE, although the view is from a
higher level.

As with all computing, Security is one of the key issues in Web Services. Eduardo B.
Fernandez provides us with a round-up of the state of play in Web Services Security, looking
at what vendors are offering, as well as the benefits of different security options, and the
reasons for different types of security.

On a similar topic, Whitney Hankison explains how Network Security can be enforced to
help keep our Web Services safe. Having Web Services encrypted as they pass information
across the Internet is all very well, but if your network isn't secure it may not be worth all
that much.

The final paper in the collection, fromJ0rgen Thelin, looks at the relationship between Web
Services and Remote References. The paper looks at how the two technologies address similar
problems of distributed computing, and how they might work together.

Resources
Throughout the book you will find URL's for further references. Due to the length of some of
these, and for your convenience, we have collected them together in one place on the
Internet: http://www. webservicesarch itect.com/book.asp.

7

www.manaraa.com

Authors: Gunjan Samtani and Dimple Sadhwani

• Return on Investment

• Cost and Expenses

• Benefits

• ROI Model and Formula

www.manaraa.com

Return On Investment (ROI) and
Web Services

In this paper, we have tried to keep a realistic, pragmatic, and balanced approach in
determining the return on investment on Web Services. It is worth mentioning that, no
matter how promising a new technology is, promoting and encouraging its usage through
such articles and papers is not justified until there is a solid business case for its adoption. It
is fundamentally important for us to warn about the pitfalls as and where we foresee them,
leaving the final decision up to the readers who range from senior management (technical
and business), through business analysts and systems architects, to project managers, and
software developers.

Defining Return On Investment (ROI)
There are several definitions of return on investment as far as IT is concerned, and its
meaning may vary from company to company. We will, though, try to keep it simple by
taking a baseline definition that is applicable to all technologies and companies.

Return on investment (ROI) is a key financial metric of the value of business investments and
expenditures. It is a ratio of net benefits over costs expressed as a percentage. This formula
can be expressed as:

ROI =((Monetary Benefits (Tangible and Intangible)- Cost of using Web
Services Technology) I Cost of using Web Services Technology] x 100

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

An Example of ROI Calculation
As an example, the IT group within a company determines that there is a 10 percent increase
in the automation of software development following the implementation of Web Services for
an organization's IT project. Other data from the IT group reveals that each one percent
increase in the automation of software development is equal to increased annual revenue of
$25,000. Furthermore, it is known that the Web Services implementation will cost $75,000.
For this example the ROI is calculated as follows:

(($250,000- $75,00) /75,000] X 100 = 233%

That's $25,000 for each one percent increase, for a total of $250,000 for a ten percent
increase. This means that for every $1 invested in the Web Services implementation, the
organization realized a net benefit of $2.33 in the form of increased revenue from the
automation of software development.

ROI Analysis
There are two fundamental methodologies through which companies can conduct ROI
analysis of a new technology such as Web Services. They are discounted cash flow analysis
and payback period analysis. Before we look at both these methods, let's discuss some of the
fundamental concepts behind them.

Direct and Indirect Measures
Both the direct, cash flow-generating contributions of a new technology or project, as well as
the indirect measures valued by management should be considered when calculating the ROI.

Discount Rate or Weighted Average Cost of Capital (WACC)
The discount rate, also known as the weighted average cost of capital (W ACC), is the
opportunity cost of capital, which is the expected rate of return that could be obtained from
other projects of similar risk.

Net Present Value (NPV)

10

Net present value is the difference between the cost of an investment and the return on an
investment measured in today's dollars. In other words, NPV calculations account for money's
time-value by discounting the future cash flow of the investment at some rate that varies with the
risk of the investment. The NPV calculation determines the present value of the return and
compares it to the initial investment. We calculate the present value as in the following formula:

Present Value= [Net Cash flow for Year 1/ (1 +discount rate)]+ [Net Cash
Flow for Year 2/ (1 +discount rate)] * 2 + + [Net Cash flow for YearN I
(1 +discount rate)} * N

www.manaraa.com

Return On Investment (ROI) and Web Services

We calculate the net present value as follows:

I NPV =Initial Investment+ Present Value

For example, if Web Services technology costs $200,000 and will save (or generate return) of
$50,000 per year for five years, there is a $50,000 net return on the investment. The NPV of
the investment, however, is actually less than $50,000 due to the time-value of money.

Internal Rate of Return (IRR)
If there is an investment that requires and produces a number of cash flows over time, the
internal rate of return is defined to be the discount rate that makes the net present value of
those cash flows equal to zero. In other words, the discount rate that makes the project have a
zero NPV is the IRR.

The IRR method of analyzing investment in a new technology or using a technology in a
project allows a company to consider the time value of money. IRR enables you to find the
interest rate that is equivalent to the dollar returns that are expected from the technology or
project under consideration. Once a company knows the rate, it can compare it to the rates
that it could earn by investing money in other technologies or projects or investments.

Payback Period
ROI is just a percentage, so include the payback time to make it persuasive. For example, if a
$100,000 investment in Web Services technology is generating $400,000 a year in profit, it
pays for itself within three months. Costs divided by monthly benefits yield the number of
months to payback.

Discounted Cash Flow Analysis
In the discounted cash flow ROI analysis methodology, the expected cash flows relating to
investments for a new technology or IT-related project spanning several years are discounted
using an appropriate rate to determine an NPV and/or IRR. Ifthe NPV is positive, then the
project's present value exceeds its required cash outlay, and the project should be undertaken.
When a project has a positive NPV, the NPV decreases as the discount rate used increases.
Similarly, if the IRR is greater than the cost of capital for the company, then the project
should be undertaken.

Payback Period Analysis
In the payback period ROI analysis methodology, the period of time it takes for a new
technology or IT-related project to yield enough returns to pay for the initial investment, or to
break even, is considered.

11

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

ROI Analysis Becoming a Necessity
Return on investment for technology projects, both new and existing, is no longer a
single-dimensional function of operational cost reduction. It has to account for multi
dimensional functions related to operational costs, changes in business activities, growth,
efficiency, and productivity. ·

ROI analysis is gradually becoming a core requirement for the kick-off of any new project or
use of new technology, as well as for measuring the success or failure of any existing project.
A good ROI analysis can lead a new project or introduction of any technology to lower costs,
improved business performance, and competitive advantage.

ROI and Web Services
Web Services offer a platform-neutral approach for integrating internal and external
applications, so that it can be used to integrate diverse systems, in a way supported by
industry-wide standards rather than proprietary standards. The ability of a company to have
real-time access to business information spanning several companies, in-house departments,
applications, platforms, and systems is one of the most important driving factors behind the
adoption of Web Services.

"What will be the return on investment?" is probably the first question that any company
would consider before investing any resources. just because it is a hot technology and has
everyone talking about it, is certainly not a good enough reason. How much companies will
have to invest in implementing this solution and what the payoff will be - both near-term and
long-term - are natural questions that need to be answered.

There is little doubt that the first Web Service is the hardest to implement. The cost and
difficulty level in business process re-engineering and integration can be high, although both
these issues are typically small, and fade away with the implementation of subsequent Web
Services. Companies can, thereafter, enjoy the fruits of incremental cost reduction inherent in
using XML-based standards and service-oriented architectures.

A company should calculate the implementation and ongoing costs associated with Web
Services including software, hardware, system integration, and future production support
expenses. These cost estimates should be carefully examined to determine the ROI for the
proposed solution.

ROI Not Just About Technology

12

Whatever the underlying technology for which ROI is being calculated, there is always a set
of business and personnel factors that have a great impact on it. We cannot stress enough the
fact that technology alone will not produce the quantifiable results and benefits as projected in
any ROI matrix or calculation. Several business factors, such as the speed of rollout and
systems adoption rate, play a critical role in determining the final numbers.

www.manaraa.com

Return On Investment (ROI) and Web Services

Calculating ROI of Web Services
Now that we have discussed the fundamentals of ROI and Web Services, it is worth discussing
in detail the formulae and matrix for actually calculating the ROI for Web Services.

How do you measure the ROI of Web Services? Well, there is a right way and a wrong way to
measure ROI. The wrong way is to measure the time representatives save in reduced paper
work, or in revenue the company saves by reducing the need for data entry. The right way is
to measure the amount of reduction in operational and developmental costs. The ROI on
Web Services comes from the increased operational efficiency and reduced costs that are
achieved by streamlining and automating business processes, reduced application
development cycle time, and increased reusablility of applications in the form of services.

Building an ROI Model

To build a ROI model for Web Services, we have to consider the cost savings from using a
service-oriented architecture built on open standards and the way these services impact the IT
and business units, leading to potential tangible (direct) and intangible (indirect) benefits. The
classification of direct and indirect benefits comes from how readily cost savings and revenue
can be attributed to the usage of Web Services. Direct benefits include reduced costs,
increased revenues, and more efficient and effective systems development, while indirect
benefits include innovation, new product developments, and capital expenditures.

It is worth mentioning, however, that some of the benefits of Web Services extend beyond the
confines of the proposed model. It is important to remember that the correct application of
this depends a lot on the estimation and validation of data, as it will not exist previously.
Measuring ROI for Web Services presents a big obstacle irrespective of the model, because
the new processes they bring are an important benefit; because these processes are new,
existing measurement tools may miss those benefits. This argument is compounded by the fact
that benefits from multi-year technology implementations are inherently difficult to measure.
We think will this be the case with Web Services, where the implementations affect different
applications, systems, and business functions and processes within a company.

Finally, let us warn the readers that there is no one or single ROI model/matrix that is
capable and sophisticated enough to produce credible numbers for Web Services within
companies of all sizes. The main reasons for the lack of such a matrix are:

D The technology is too new and there are not many large-scale implementations that
provide reasonable numbers and statistics.

D Such small Web Services implementations as are taking place are not standard within
companies and each implementation is in a way unique. Uniqueness within each
company, of course, will apply to each technology, but it is more an issue for Web
Services, as the user base is relatively small.

D There is a lack of information, knowledge, and understanding about how Web
Services really impact the business processes.

13

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

CJ The development tools and servers for Web Services are still evolving. It is thus too
early in the life cycle of this technology to make any kind of prediction about a
reliable ROI, as a lot would depend on whether companies would be able to use
existing assets (such as integration brokers, application servers, and databases) for
Web Services.

Factors to be Included in ROI Calculation
In this section, we will list the different factors that have to be considered while calculating
ROI for Web Services. The relevance and importance of each of these factors will vary greatly
from company to company, application to application, and implementation to
implementation. If all these factors are considered together, however, you can get a pretty
decent result from the ROI model used for Web Services. The factors we will look at are:

CJ Costs and expenses.

CJ Technical benefits.

CJ Business benefits.

Costs and Expenses
Here we examine the principal costs to be weighed in the ROI calculation.

1. Hardware Requirements

Find out the difference in hardware requirements in developing an application based on Web
Services and your current architecture. Hardware costs make a large portion of the overall
project cost. Explore whether using Web Services will allow you to reduce the new hardware
required and squeeze the most value out of the existing and new hardware, by including the
following parameters for the development, quality assurance, and production environments:

CJ Number of servers required.

CJ Configuration of the servers required.

CJ Estimated percentage increase or decrease in the performance of the existing
hardware through the usage of Web Services-oriented architecture.

CJ Estimated cost reduction or increment.

Other parameters, such as man-hour savings for the administration of reduced
hardware, or increase in man-hour expenses due to increased hardware requirements,
should also be considered.

2. Software Requirements

It is critical to determine the Web Services solution that meets your Web Services usage goals.
Software costs will probably be one of the biggest expenses. This expense, however, can be
significantly lowered if existing assets in the form of application servers and integration
brokers are used for Web Services as well. Determine the following:

14

www.manaraa.com

Return On Investment (ROI) and Web Services

D The support for Web Services by your existing application servers and integration
brokers, and whether other software is needed to support your Web Services
strategy.

D The cost of upgrading your current software.

D The cost of bringing in new software.

D Any associated additional operational costs.

3. Training Requirements

Training your IT staff on Web Services technology is going to be a big investment. In tough
economic times, all companies like to cut on this cost as much as possible. It should be
realized, however, that the incorrect usage and implementation of a new technology, due to
lack of proper training, might turn out to be more expensive in the long run. Account for the
following in your ROI calculation:

D The total cost of training developers, architects, project managers, and system and
network administrators on Web Services technology and supporting tools and servers.

4. Network Bandwidth Requirements

The use of XML-based standards in Web Services implies that the data is exchanged using
XML messages. XML messages can be very large (in some cases five to ten times the size of
their corresponding EDI and SWIFT messages) making it much slower than EDI and
SWIFT. Such a large flow of data over the intranet or Internet uses up a lot of network
bandwidth and slows down the whole process. Thus, there may be a need to overhaul both
the internal and external network bandwidth for using Web Services. So, calculate the
investment for the following:

D Estimate the load that Web Services put on your network bandwidth.

D Calculate the investment that will be required to meet the additional network
bandwidth requirement.

D Determine the maintenance and ongoing operational expenses for the same.

5. Monitoring Tools

Using Web Services, especially external services, requires trust. You cannot afford not to
monitor the performance of Web Services, because if they slow down (or worse, break) your
applications, you would want to know immediately. There will be a need for your company to
invest in monitoring tools that can check the quality, design time, and, most importantly, run
time performance and health of your Web Services, and application as a whole. This is most
true in a business-to-business situation, where service-level agreements have to be adhered to.
It is likely that monitoring and administrative tools will be provided by the Web Services
solution, but if they are not you will need to determine the following:

D The investment that will be required to buy and maintain additional monitoring tools.

15

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

6. Operational Costs and Vendor Consulting

In any software project there will be several operational tasks, processes, and associated
expenses, and Web Services-based projects are no different. Furthermore, there may be a
need to bring in external vendors or consultants at different points or throughout the software
development cycle. Account for the following in your ROI calculation for Web Services:

o Web Services-related software products installation, administration, and
configuration expenses.

0 Estimate the cost of external vendors or consultants throughout the project.

Technical Benefits

Here we look at the principal technical benefits to be considered for the ROI calculation.

7. Software Development Automation

We are a long way short of the point where applications will purely be orchestrations of Web
Services. Nevertheless we should still find out if the use of Web Services within a given
project would help you to achieve software development automation. This automation may
well expand to other projects as well; a Web Service developed for one project might be
usable as a plug-and-play architecture for other projects. Analyze how much your company
will save in the development life cycles, using the following parameters:

0 Estimated number of applications/systems that can reuse Web Services.

o Total saving software development in terms of man-hour effort through the usage of
Web Services.

0 Estimated saving in terms of productivity.

8. Streamlining of Middleware Technology

There is no question that, once Web Services technology matures, it will help in streamlining
the now widely diverse middleware technology existing within companies of all sizes. We
envision that this factor would probably be one of, if not the easiest to measure as a part of the
ROI calculation on using Web Services. Use the following parameters:

0 Estimate the reduction in hardware expenses.

o Repeat the same calculation for software-related expenses.

o Finally, do the same calculation for personnel-related expenses resulting out of
streamlined middleware technology.

9 Usage of Standards-Based Integration

16

Every company - irrespective of size or sector - builds and maintains several proprietary
interfaces to integrate internal and external systems. The addition of each new system to the
puzzle results in a Cartesian product of new interfaces to be built, tested, and deployed. A
change in any underlying system requires a coordinated change in all the interfaces, making
the whole process very complex, tedious, time-consuming, and expensive. Measure the
following parameters:

www.manaraa.com

Return On Investment (ROI) and Web Services

0 Estimate the total number of proprietary interfaces that you will avoid building,
deploying, and maintaining if you use Web Services.

0 Determine the savings in terms of man-hours, hardware, and software through the
use of standards-based interfaces.

10. Integration with Applications and Business Process Management

XML-based Web Services are an ideal technology for integrating diverse applications and
systems as they allow applications to communicate across the Internet in a platform- and
language-independent fashion. Furthermore, Web Services help in the clear separation of
business process logic and the participating business services, thereby making the
development, execution, and management of these services much easier. Measure the
following parameters:

o Estimate the total savings resulting through using a platform-neutral application
integration technology.

0 Determine the savings in terms of automating and orchestrating business processes as
Web Services.

11. End of Duplication of Software Code Leading To Reusability

In any organization, it is easy to find duplication of groups within the IT department. There is
often little interaction between these groups, leading to the development and maintenance of
duplicate code and applications. The existence of these silos significantly increases the
operational costs of the IT department. Although technologies such as CORBA, DCOM, and
J2EE Connector Architecture do try to bridge the gap between the disparate systems within a
company, they fall short of giving the ability to expose the systems in a standard consistent
way. This does not mean that Web Services will eliminate the technologies mentioned above.
In fact, Web Services will work hand-in-hand with existing technologies in helping companies
eliminate the duplication of groups and systems. Measure the following parameters as part of
the whole ROI calculation:

0 Estimate the total number of groups and the systems they manage that are working
in silos.

0 Analyze how many of these systems and applications are redundant and overlap
each other.

o Calculate the savings (hardware-, software,- and personnel-related) that would result
from eliminating the redundancy.

0 Calculate the savings (hardware- software-, and personnel-related) that would result if
the remaining useful systems can be exposed in a standard way. Keep in mind that
the information of all the exposed interfaces can be published to a central repository,
so that all the groups within the IT department can find and use them.

17

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Business Benefits

Here we examine the business benefits to be taken account of in calculating the ROI for
Web Services.

12. End-User Productivity

There is no direct formula for calculating increase or decrease in end-user productivity. Try
instead to measure factors such as the reduction in the amount of human intervention
required by building applications using Web Services, the overall improvements in response
time, and the availability and usability of Web Services-based applications when they are
deployed to the end-users. Use the following parameters:

IJ Estimate the number of end users using the applications in consideration.

IJ Determine the percentage productivity increase in their performance.

IJ Extrapolate that to the total cost savings through the usage of user-oriented
Web Services.

13. Participation In Dynamic Business

One of the promises of Web Services technology is the ability it provides to participate in
dynamic business relationships. Since the discovery, binding, invocation, and communication of
Web Services are standards-based, companies can conduct business in a real-time mode rather
than the traditional static mode. To measure the increase in profitability due to dynamic
business participation, you will have to record and sample the data for some days - even
weeks- before a reasonably correct forecast can be reached. Use the following parameters:

IJ Estimate the number of new business relationships.

IJ Determine the percentage increase in your business revenues due to new, dynamic
business relationships resulting from using Web Services.

14. Collaborative Business Activities

18

Collaborative commerce, also known as c-commerce, allows Internet-enabled companies to
share intellectual capital and exploit the core competencies of their trading partners. It
promises to deliver significant increases in corporate innovation, productivity, and
profitability, as well as create new opportunities for dynamic B2B collaboration over the
Internet. Collaborative commerce is enabled by B2B integration which leads to shared
databases, open tracking systems, enhanced inter-enterprise visibility and cooperation,
streamlined business processes, new cost efficiencies, and an expanded customer base for
every collaborative partner. All this results in a competitive advantage that traditional
business models simply cannot duplicate. Web Services have the ability to bring reality to
the vision of collaborative commerce. Measure the following parameters as part of the
whole ROI calculation:

www.manaraa.com

Return On Investment (ROI) and Web Services

D Quantitatively calculate the cost efficiency resulting through Web Services-enabled
collaborative commerce.

D Measure the cost savings as a result of increased inter-enterprise visibility in the
whole supply chain.

D Finally, project the revenue and expenses incurred in new product development
through collaboration among companies of the same sector using Web Services
enabled technology.

15. Better and Cheaper Customer Service

Web Services can play a major role in customizing a range of product packages suited for each
customer's specifications and making it cheaper and faster to deliver. This can be achieved by
assembling Web Services targeted for each product, and bundling them together. Of course the
assumption here is that there will be servers and tools available that will make this orchestration
of Web Services possible. Measure the following benefits of faster customer service:

D The increased revenue generated through targeting the marketing of products and
services for each customer.

D Measure the cost savings as a result of automated customer services done using Web
Services technology.

16. Other Benefits

There may be other direct and indirect benefits for the usage of Web Services, such as faster
time to market, increased process efficiency, and increased efficiency through business
process automation. These also have to be accounted for in your ROI calculation.

ROI and Risk Management
No ROI analysis is complete without considering the risks associated with the underlying
project and technology, and managing those risks with the goal of mitigating them. It is worth
stressing that risk management is not merely a simple step-by-step process that can be
performed effortlessly. Furthermore, companies can choose to stick to mature and proven
technologies with known risks, but in doing so lose out on the high rewards and returns that
might be associated with the new technology. Lastly, if every investment could be precisely
quantified in terms of its return, the business wouldn't be taking enough risk, and competitors
would gain the upper hand in innovation and value creation for their business partners,
customers, and employees.

Companies must constrain risk associated with Web Services by implementing disciplined
project management and by testing extensively and at regular intervals. Risk management issues
should be outlined in your Web Services strategy and should be applied to the pilot project.

Let's briefly discuss the risks associated with Web Services technology, as they should be
considered in any ROI model:

19

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

17. New Technology

Web Services technology and the tools and servers supporting it are still new and evolving. In
their current state, Web Services can be utilized only for non-transactional, call-and-response
type scenarios. This limitation restricts the amount of business value that companies can
immediately derive through Web Services.

18. Standards not Matured or Finalized

The standards supporting Web Services technology such as UDDI, WSDL, and WSFL are
still evolving and have not yet matured. There is no guarantee that if you implement a Web
Service today, using the current standards, you will not have to modify it later when the
standards change.

19. Web Services Development Tools and Servers

Practically every major player in the server software industry is providing initial support for
Web Services. This support, though, may not be sufficient to build, deploy, and execute
mission-critical Web Services. It is worth mentioning that the quality of service offered by
application servers and integration broker platforms will rely and depend as much on Web
Services standards and protocols as it will on the maturity, scalability, and integrity of the
application server itself.

20. Quality of External Web Services

The quality of Web Services, such as availability, performance, and security aspects, will be
critical to identify as potential risks while using extemal Web Services for B2Bi.

21. Security

Security is one of the primary factors that will determine the adoption of Web Services for all
applications, by companies of all sizes, in all sectors. It also poses the greatest risk for this
technology, and secured interoperability holds the key to the success of Web Services in the
long run. The key security requirements for using Web Services are authentication,
authorization, data protection, and non-repudiation. Be alert to potential security loopholes in
Web Services since they are vulnerable to a wide array of security threats like denial-of
service attacks and spoofing. Any implementation of Web Services technology should not
begin until the security risks are considered in respect of the security policy and existing
solutions within the company.

Applying the ROI Formula

20

Now that we have discussed all the costs and expenses along with the technical and business
benefits and risks of Web Services, it is time to apply the numbers to the ROI formula for
Web Services. As presented earlier in the paper, you can either choose the discount cash flow
analysis or payback period analysis.

www.manaraa.com

Return On Investment (ROI) and Web Services

We will arrive at the numbers through a series of simple steps:

1. Calculate the total cost of Web Services implementation. Sum up all the expenses
that we listed from point 1 through 6.

2. Determine the total savings resulting through the technical benefits listed for the
usage of Web Services by going through points 7 to 11.

3. Determine the increase in productivity, efficiency, and revenues through the
business benefits of using Web Services. For this, traverse through points 12 to 16.

4. Quantify the risks associated with the introduction and usage of Web Services by
going through points 17 to 21.

The last step is to categorize the results from Step 1 through 4 under the following headings:

D Project costs including capital expenses, implementation labor, management and
support, operations and contract expenses (A).

D Project benefits including net tangible benefits (B).

D Project risks quantified as potential expenses (C).

Using the formula from earlier in the paper, we apply the figures as follows:

I ROI for Web Services= (B- A- C)/ (A+C) * 100

The desired result for using Web Services will be if you get the following:

D Increased Revenue.

D Decreased Cost.

D Improved Efficiency.

D Higher Profitability.

D Shorter Payback Period.

D Higher IRR.

D Less Risk.

This scenario will make a business case for Web Services. It may be the case, however, that
not all the factors listed above prove favorable. In this case, you will have to weigh all the
options and make a decision based on the short and long-term goals.

21

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Not the Only Model
Before we conclude this paper, we should mention that this is not the only model that can or
should be used to calculate and measure ROI. Each company or organization may use a
different model to measure ROI, such as using a method that begins by identifying the desired
economic results of Web Services strategy and then focuses on creating the activities
necessary to achieve those results. Use the model that best fits your organization. Finally, be
sure that ROI should account for phased implementation of Web Services technology.

Conclusion

22

Web Services run through industry-standard protocols and offer the potential of
eliminating the need for proprietary hardware, software, and network protocols.
Companies will be able to lower their investment costs greatly in terms of increased ROI
by implementing Web Services.

There is no fixed model for calculating the ROI of Web Services as of now, and the ROI in
each company would greatly depend on how the technology is actually employed in solving
software and business processes-related tasks. Any model used for calculating ROI should
take into account the risks associated with the usage of Web Services.

www.manaraa.com

Return On Investment (ROI) and Web Services

23

www.manaraa.com

Author: Mike Clark

• Web Services Benefit Development

• Examination of Web Services

• Threats to Web Services

• Web Services Companies

www.manaraa.com

Selling Web Services

The term "Web Services" though applicable to any service offered on the Internet such as
hosting, development, credit card checking, etc., has been adopted to describe a new
phenomenon of computer-to-computer interaction using XML, and standard internet
protocols such as HTTP. Normally, running an application on a remote computer system is
difficult and time consuming because of the various operating systems and developers that
you need to contend with. During the last two years, however, many leading vendors have
agreed upon a standard that allows one computer system to run applications on a second by
passing simple text messages between the two:

Message to Web Service

Add 4 and 4 for me 1----,

The ans""r's 81---
Web Service

that adds
numbers together

www.manaraa.com

Mike Clark

The previous example to add two numbers together explains in simple terms what happens
when an application runs a Web Service. Obviously, a Web Service could perform far more
complicated processing than this. For example you could send a message to debit your bank
account and credit the bank account of your supplier.

This simple messaging standard (known within the industry as SOAP, Simple Object Access
Protocol) has been largely brought into the spotlight through the efforts of major industry
players such as Microsoft, IBM, SAP, and HP. These companies have taken up the
commitment to integrate Web Services technology within new product launches for 2002/3.
This has led us today to the edge of a startling new industry.

What's So Special About Web Services?
There's no doubt that interesting technical ideas come up in all software development fields;
every day some bright spark admits to reinventing the Internet. So why Web Services? It's
easiest to explain using the following points:

D Large corporations, many of which are usually in competition with each other, are
adopting Web Services. For example IBM, Microsoft, BEA, Oracle, HP, and Sun.
This becomes even more astonishing when you realize that historically this is the first
time that large portions of the industry have so wholeheartedly adopted a new
technology all at the same time.

D The Web Services technologies are based on open standards, and are therefore not
owned by anyone. A cross-industry team of technical and business experts decide on
what they should do and how they should do it. There is no royalty to pay: the
standard of how to define Web Services can be used by anyone.

D It offers the ability to allow developers to charge someone else for using their
functionality, without buying their product.

D It's very simple to use.

D You can sell your functionality or application globally.

D It can be used on any operating system, such as Windows, Macintosh, Unix, Linux, etc.

How do Web Services Benefit Development?

26

This new application of technology means that a computer programmer or a software
development team will be able to take an application and allow customers to run it from any
part of the world but without the customer having to download any software. They simply buy
access to a Web Service and then call it from within their own application, therefore
extending their own functionality, but at a fraction of the cost it would have taken them to
develop it themselves.

www.manaraa.com

Selling Web Services

Point by Point Examination of Web Services
Some examples of potential consumer Web Services:

D Name and address database.

D SMS text messenger (sending messages to a mobile phone).

D Fax on Demand.

D Stock price results.

D Cross-organization document retrieval (gettjng your statement electronically, say).

D Cross-organization ordering (sending a request to order stationery, say).

D Text translation.

Two potential uses of Web Services:

D When walking home you need to send a fax to someone confirming an order. Your
WAP phone sends a message to the 'Fax on Demand' Web Service with any text you
type on your phone.

D Employed by a large banking organization, you want to make accounts information
available to customers and salespersons. You create your own Web Service that
allows users to retrieve (password protected) account balances. You then get a
dedicated web site team to incorporate it within your web site for general customer
enquiries. You also get another development team to create an interface for your ICL
mainframe call center, and yet another to develop an interface for WAP phones, all
feeding off the same Web Service.

Customer advantages include:

D The time it takes to develop an application is immediately reduced.
Note: This is certainly correct when developers' knowledge is sufficient to quickly grasp and
create a link to a Web Service. In certain areas, though, such as ASP.NET, because it is such a
new environment, the reduction in application development time will be preceded by many days
spent on research, development, and getting the best out of this environment.

D No need to download any specialist software to run Web Services.
Note: Correct, but you will need to have a toolkit or some software that understands and is able
to traffic SOAP messages between your operating system and the Web Service.

D You can simply try the Web Service and then instantly buy the Web Service.
Note: Currently there are only two brokerages that are able to perform this function:
http://www.webservicebuy.com/ and http://www.serviceforge.com/.

D Web Services are easy to incorporate seamlessly within an existing application.

D You can use the same Web Service on any computer system you use, W AP,
Windows, Unix, Linux, Mac, etc.

27

www.manaraa.com

Mike Clark

28

Customer disadvantages include:

0 There may be hundreds of similar Web Services to choose from, making it difficult to
make a decision.
Note: This part of the industry is being rectified by specialist directories and Web Services
brokerages becoming available. These brokerages {see http://www.salcentral.com/,
http://www.webservicebuy.com/, http://www.allesta.com/,
http://www.xmethods.com/) give you additional information about your Web Service or
Web Services provider to enable you to make an informed decision.

0 There is an inherent latency in running Web Services over the Internet.
Note: This is true, but then as one of the methods of transferring SOAP requests is the TCP/IP
protocol, its also true to say that other commonly used methods such as COM would also have
this same latency; in reality its no slower than other methods.

0 You must create a client application to use a Web Service.

Advantages to Web Services developers:

0 Once developed there is no lead-time till marketing your Web Service.
Note: This means that because you can put the Web Service on the Internet and make it
immediately available to customers you can effectively develop it one day and sell it the next.

0 A worldwide audience can use the service.

0 Bugs can be fixed instantly and for all users.
Note: Something that we'll all be pleased about is the ability to fix bugs, and since the code is
running on your server, the fix will be instantly available to all your customers. One word of
caution, however, is that errors can be introduced jus(as easily and quickly.

0 The service can be used by any computer system.

0 You do not need to be concerned about installing the application on different computers.

0 You can combine with other companies to produce a series of Web Services
together.
Note: Partnerships with other like-minded developers or teams could allow large products to be
created at a fraction of the conventional cost. These products might then be marketed globally.

Disadvantages to Web Services developers:

0 You still need to market your functionality.
Note: There s no getting away from it, marketing still needs to be done. Now, however, you also
have other potential avenues. As before, you now have the option of approaching specialist Web
Services brokerages that will market and sell the product, taking either a monthly
administration fee or a percentage of sales.

0 You may create a Web Service that already has significant competition.
Note: An example of this would be anonymous e-mail. It is undoubtedly the most prolific Web
Service around already and by the end of 2002 it is likely that at least 50 e-mail Web Services
will be available.

www.manaraa.com

Selling Web Services

0 The SOAP standard is still developing.
Note: No significant changes are expected. As this is seen as a definitive standard for decades,
however, it is not realistic to think that some changes won't occur as the experts work toward
perfecting its definition.

o SOAP Toolkits have their work cut out in becoming compliant.
Note: Even though the SOAP standard is defined in some depth, because of the intrinsic
versatility of XML there is a lot of scope for misinterpretation. Also, because of the size of the
definition, many vendors are still having problems becoming fully SOAP-compliant.

Threats to Web Services' Rise to Power
As well as giving you insight into the current Web Services industry, we will also discuss the flip
side of the coin: some of the potential pitfalls that may delay Web Services, or stop it in its tracks.

ASP or Not ASP?
Web Services publishers are not the first to charge for service-based technology. The
Application Service Provider (ASP) market, for instance, has supplied and charged for
functionality available over the Internet for years. Their failure at technical standardization,
however, is a definite disadvantage, but they also have a distinct and not so obvious
advantage: a clearly defined business model:

All development starts with a requirement for a revenue stream: for instance, 'accounts
package for car showrooms'. The business model defines a method of charging. These
admittedly simplified stages define the basic structure an ASP uses to create a commercially
viable application.

It is not until both these stages are completed that the most suitable technology is found and
used. The choice of technology is based on requirements of speed and any other peculiarities
that have emerged in the first two stages of the business model.

29

www.manaraa.com

Mike Clark

The result is that ASPs end up with a well-defmed charging mechanism, clearly outlined client
interlace and application, and a potentially profitable product before development has commenced.
Web Services E-Business, however, does not have a defined business model:
In the case of Web Services, the ASP business model has been turned around. By defining the
technology first, the technology is what seems to be driving the search for products to
develop. This structure has obvious similarities with the unsuccessful dotcom strategy. Much
of the dotcom discourse went along these lines:

Entrepreneur: 'I think my dotcom will succeed.'
Interviewer: 'What are you selling?'
Entrepreneur: 'I haven't decided yet.'

There is an inherent risk that the Web Services industry is falling into the same patterns of
error. This direction of endeavor will, undoubtedly, change within the next few years, as
developers become more familiar with this new technology, and many new and interesting
products emerge. By then, though, the damage may have already been done.

So what's the latest state of play in the industry and what do the signs tell us? Well currently
most (if not all) Web Services in the public domain offer small amounts of functionality. Even
now many are on the lookout for suitable ideas for Web Services to develop, therefore it leads
me to believe that developers still have the lead on this one at the moment. Soon we should
expect that the commercial (rather than technical) industry will start to champion this
emerging technology. Web Services will then be used as a technological layer that is helpful
for developing the solution but which did not actually drive the creation of the original idea
for the project.

Let Them Be Free

30

Because of the low costs in producing and publishing them, the majority of Web Services are
currently available free of charge. It should be noted, however, that these Web Services offer
little in the way of functionality. In the infancy of an industry, this is not a bad thing: it simply
helps promote a new technology and the companies producing its services.

www.manaraa.com

Selling Web Services

As the Web Services industry matures over the coming years, organizations will stop gaining
benefits from press activity and start to consider the possibilities of making money out of actual
sales. The step from a market of free Web Services to one where they cost money is significant.

In fact, by the time we reach this stage in the development of Web Services, there may
already be thousands offree Web Services on the market. They won't just come from single
developers, but from large teams, attempting to make inroads into the Web Services market.
The dotcom industry went wrong in a similar phase of its development, when the
fundamentals of building a viable business model were often ignored. The current movement
towards a market of free Web Services, therefore, follows a dangerous precedent set by
numerous dotcom failures.

Web Services providers need to introduce pay-to-use Web Services over the next few months.
This is not enough, however, as they also need to state immediately that they intend to charge
for services. Microsoft has already made this statement when producing Passport/My
Services. It is currently offered free of charge, but under the proviso that it may become a
chargeable product in the future.

Customer Trust
To use a Web Service, your customer must be sure that it is reliable and available 100% of the
time. This can be difficult to prove to a customer, especially when, for example, you're storing
the names and addresses of visitors to their Web sites.

Imagine the problems that could occur if, for instance, a company produced a widely adopted
Web Service to manage visitors to a Web site. Then one day their system was not as fail-safe
as it first appeared and their Web Service suffered a fault. Effectively this one action could
take down thousands of Web sites and stop people logging on and using their services.

Trust in Web Services is possibly one of the greatest inhibitors to a global Web Service
industry. We expect that, as the industry progresses, companies will emerge dedicating their
efforts to sifting and sorting research information on Web Services and Web Service
providers. This research information will form the backbone of what will be commonly
known as a Who's Who of Web Services- a list of individuals, companies, and products that
are considered viable and commercially trustworthy.

In addition, because of the ease with which you can change Web Services, developers must
have a definite line of communication with all their customers: any change they make must be
advertised to their customers, almost on a minute-by-minute basis.

To ease this process you could also use the services of a body that acts as an intermediary to
your changing Web Services definition. This organization simply watches a Web Service on
your behalf and then e-mails any customers once your Web Service changes. Two Web sites
performing this task are http://www.webservicewatch.com/ (SMS text and e-mail notification)
and http://www.allesta.com/ (e-mail notification).

31

www.manaraa.com

Mike Clark

Dependent on Microsoft's New Software (a.k.a .. NET}
It's always exciting when an industry pretty much agrees that a new technology is the right
direction to go. Some of the giants of the industry have taken the plunge and adopted the
SOAP technology. In this type of industry, however, developers' conception of a particular
product or idea can move mountains.

For example, the Microsoft .NET wave that's currently washing ashore is asking for six
million VB developers to adopt this technology. This won't happen overnight, and while
many will take up the challenge immediately, many will be looking for alternatives because of
the steepness of the learning curve implicit in the migration to .NET, and the fact that there
needs to be an incentive (potential future work programming VB.NET). So what if a bright
spark comes along with a .NET look-alike, an application that allows you to create Web
Services using existing technologies, such as Visual Basic 6? If widely accepted it would
certainly slow down the growth potential in Visual Studio .NET (Microsoft's integrated .NET
development environment).

Charging Mechanism
At the moment the Web Services industry has largely neglected to look for a method of
charging for using Web Services, and is in this respect not dissimilar from the dotcom industry
over the last few years. There are, however, two distinct methods of charging for a Web Service:

o Creating your own charging mechanism
This scenario requires the Web Service developer to create their own charging
mechanism to accept payments and validate users. The commitment from the
developer is significant.

o Using a brokerages' charging mechanism
This scenario requires the developer to use the services of a Web Services brokerage.
This new term refers to a company that allows your customers to buy access to a Web
Service and also for you to validate whether a user is allowed to use your Web Service.

Each of the above scenarios has its own advantages and disadvantages. Firstly, developing
your own Web Services payment and validation method diversifies the intensity of the
development itself, when developers could be concentrating on actual functionality. Using a
brokerage, however, has an intrinsic cost implication, and you give away a portion of your
revenue. The current thoughts on brokerages are that they will only charge small "per click"
values, or even a simple monthly fee. A brokerage may not in fact support your preferred
charging mechanism, in which case a developer should either change brokerage or
collaborate with it to have a new mechanism successfully implemented.

As of this writing, there are currently only two brokerages that support charging for Web
Services: http://www.grandcentral.com/, which offers a suite of services for integrating and
charging for Web Services; and http://www.webservicebuy.com/, which offers an easy-to
implement authorization function, and allows for the charging of customers by credit card.

32

www.manaraa.com

Selling Web Services

We can get some ideas about how to charge for Web Services from other industries. A good
example is the telephone call industry. The rate cards that are used for 'phone calls work well
for Web Services calls. They allow charging for calls on a sliding scale depending on the
number of calls purchased.

To complete this section I have outlined below some of the charging schemes that are
currently under consideration:

Scheme

Charge per call (Prepaid)

Charge per month (Subscription)

One-off charge (Prepaid)

No charge (Freeware)

How it works

A customer buys a set number of calls to one of
our Web Services. Every time this customer calls
our Web Service, the call is registered. When the
customer runs out of calls (or shortly before), they
are automatically notified and asked to buy more.

A customer pays for unlimited use over a period of
time. They pay to have access to a Web Service
for a particular period of time: one month, three
months, six months, or one year. Once that period
ends, we either notify the customer and ask them
to confirm that they wish to extend their
subscription or, depending on the arrangement,
automatically charge their account for another
period of time.

The customer makes a one-off payment for
unlimited use of our Web Service for the lifetime
of that Web Service. The lifetime might only be a
few months: for instance, with the case of a news
feed for a specific Olympic games.

Our Web Service is free for a specific period. This
could be for the lifetime of the Web Service or for
a shorter trial period.

We don't have to use only one of the above charging methods for our Web Service. We could
combine any of the above methods to make alternative payment schemes. For instance, we could
start with the 'no charge' method for a trial period before using the 'charge per call' method.

It's Just Another Standard; I'll Wait for the Next One?
New technology is a little like a bus - there will be another one round in a minute - so how
do we know if and when Web Services has really taken off? Consider the tactic employed by a
stock market broker in the 1920's: "count the smoking chimneys". If enough steel works are
busy, then the industry is booming.

33

www.manaraa.com

Mike Clark

Though a little basic, it's definitely worth considering who else is making the commitment
towards Web Services. Microsoft for example has reportedly spent upwards of $5 billion in
marketing and developing its .NET platform. Here's a shortlist of who's doing what:

Vendor

Apache

Microsoft

IBM

Sun

Oracle

Borland

Apple

Product

Produced ApacheSOAP, an open-source SOAP Web Services server.
Working on Apache Axis, the third generation of Apache SOAP.

ASP.NET, the Web Service development tool, has rolled out first quarter
2002. Fully Web Services orientated, replacement over the next 5 years
for Visual Basic (reportedly 6 million user base). Suite of servers that are
Web Services orientated.

Produced a SOAP Web Services server through the Alphaworks
program. IBM is also a very ardent supporter of Web Services -
belonging to many of the Web Services specification bodies. IBM also
provides a platform for Web Services based on the W ebSphere server.

Sun controls the java platform including its various APis. Through its
iPlanet product Sun hopes to provide a platform for Web Services. This
company is also a member of the Liberty Alliance - a rival to Passport
offering single sign-on authentication.

Oracle has long been working at selling itself as a complete platform
provider for enterprises. Its main contribution in this field is therefore in
business system integration (ERP, CRM).

Producing support for Web Services under Linux. Producing support for
Web Services under Delphi 6 (reportedly a four million user base).

Apple has added SOAP support to its new Mac OS X operating system
for AppleScript to enable communication across your network so you
can send AppleScript events from one Mac OS X system to another.

What Type of Companies Will Form Around Web Services?
With the onset of Web Services there are a multitude of different types of companies that will
attempt to make commercial ventures into the Web Services market. Below is a list of some of
the new industry roles that are emerging.

Web Services Development
A company that develops Web Services on behalf of others then sells access to those Web
Services. This requires that the Web Service developer (team) has a suitable charging
mechanism in place; look out for proof of reliability.

34

www.manaraa.com

Selling Web Services

Asking questions about fail-safe backup measures may also see holes appearing in a
company's use of Web Services. If they are transporting secure information also look for what
security measures (encrypting data) they are using.

If their entire income is meant to be from others buying access to their Web Service, you must
also evaluate the market that they've produced the Web Service for. An example would be a
Web Service for SMS text messaging; the mobile phone industry, although saturated with
phones, is also enjoying a substantial increase in SMS text messages being sent between phones.

Revenue Stream: Revenue from charging for use of a Web Service by monthly fee or number
of times used, as well as Consultancy income.

Hosting of Web Services
A company that hosts Web Services on behalf of other developers. This is definitely a
different method than simply hosting a web site, which most of us are used to. Web Services
must be situated on a computer system that is accessible 24/7.

Specialist hosting companies will have a significant movement from web site hosting to ASP.NET
hosting. Also a hosting company will usually be targeted around one platform, for example Linux,
Microsoft, etc. Therefore look for a proven track record in hosting of other kinds; this will quite
often serve as an excellent stepping stone to the specialist Web Service hosting.

Revenue Stream: Hosting companies will get their revenue from monthly payments from
developers to host a Web Service. Also from storing data and code off-site away from the
Web Service developer.

Testing Labs
Companies that test Web Services for a fixed or monthly charge. Because Web Services are
now accessible globally, as a developer you could create a Web Service but let someone else
test it for you just before it went commercially live. This allows you to get a stamp of approval
for your Web Service based on certain factors, such as speed, reliability, and ability to work
with all major development tools. Look for an accreditation scheme, one that gives a Web
Service developer some added advantage to using this Web Services tester.

Revenue Stream: Testing labs will charge a fee for testing Web Services, and also charge a fee
for regularly testing a Web Service.

Web Services Brokerages
Companies that buy and sell access to Web Services. Though a lot more difficult to get right,
this service also offers one of the largest investment opportunities. For example, a Web Services
developer asks a brokerage to sell their Web Service. Then a customer goes to the brokerage to
look for a desired Web Service. Once one is found, the customer purchases calls to that Web
Service using a special username and password, and the brokerage gets a commission.

35

www.manaraa.com

Mike Clark

Revenue Stream: From a percentage cut from the overall turnover of the Web Service (say,
20-40% of all revenues).

Web Services Toolkit Developers
Each operating system needs a small application to help it understand and operate with SOAP
messages. There are already probably 20 such toolkits available on the market, many of which
are free. This type of toolkit development can allow a company to become an industry leader
in a niche area of development. When evaluating what area you would like to invest in, you'll
need some significant technical expertise or help to make sure that you have an excellent
chargeable product in a market which is saturated with free SOAP toolkits.

Revenue Stream: Selling application tools and specialist servers for developing Web Services.

Conclusion

36

So where do you go from here? It is essential that you consider and understand the
commitment that many companies are making worldwide in Web Services. The market is
completely open at the moment and an organization with the right backing could create a lead
that would be difficult for others to attack later. If you're considering Web Services, it's
certainly perfect timing to get into this exciting market. Don't consider Web Services as a
method of making a quick buck, though; you should be prepared to wait for at least 12 to 24
months until massive products such as ASP.NET have taken hold in the industry. By that time
with the right direction I would expect the pioneers of this industry to be well placed for the
emergence of what many believe will be a global market economy.

Based on the activities of most key vendors, Web Services are definitely here to stay, and in
12 months' time will be top of the agenda for most companies and institutions. I hope, though,
that we have now given you as a developer or decision maker the opportunity to see what the
future may hold for this technology, and as such allow you to use this information to make
some informed and extremely profitable decisions over the next few months.

www.manaraa.com

Selling Web Services

37

www.manaraa.com

Authors: Gunjan Samtani and Dimple Sadhwani

• EAI fundamentals

• Patterns for EAI

• Differences between EAI and Web Services

• Architectural pre-requisites

• ROI for Web Services

www.manaraa.com

Enterprise Application Integration
{EAI) and Web Services

An average Fortune 500 company may have 50 or more internal business applications
deployed on different platforms, and sometimes even on different versions of the same
technology. Not all large enterprises exist as one autonomous whole, often they have evolved
from merger and acquisition, and house a diverse range of smaller enterprises with varying
dynamics and technology infrastructures that need to be managed in concert with business
priorities orchestrated by a head office. The information technology environment in such
companies is extremely dynamic as they adopt, at different rates, the latest and the best-of
breed solutions provided by different vendors. The solution from each vendor may have
different hardware, platform, and database requirements, which results in the implementation
of multiple physically separate systems.

As companies move in the direction of collaborative business-to-business e-commerce, they
will first have to look inward to their own internal systems, applications, and processes.
Several business processes span multiple internal applications. These applications must be
able to communicate dynamically in real-time before a company can effectively "e
communicate" with the outside world.

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Enterprise Application Integration (EAI)

40

Most companies have an environment of disparate legacy systems, applications, processes,
and data sources, which typically interact by a maze of interconnections that are poorly
documented and expensive to maintain. Additional problems arise from management
practices embedded in corporate culture, and market consolidation in the digital age, where
mergers and acquisitions of companies can increase the complexity of system integration
exponentially.

The segmentation of information systems was exacerbated with the introduction of
commercial off-the-shelf applications such as enterprise resource planning (ERP), customer
relationship management (CRM), supply chain management (SCM), and portals. Early on,
these systems were designed as self-contained "black-boxes" with little or no means for
accessing internal data or processes. Although many of these applications now provide better
access to their underlying data and business logic, integrating them with other systems in the
enterprise is still a challenge.

Each node in the following diagram maintains its own data, which may be shared among
the nodes. Sharing of this data has been typically accomplished using data transfer methods
including batch processes and data import/ export jobs. Since the data of one node is not
available in real-time to other nodes, the latter cannot analyze and make decisions while a
transaction is being processed, or immediately after the transaction has been processed at
the former:

Enterprise Portal
Application

Financial System

ERP System

SCM System

CRM System

Databases

Legacy System

www.manaraa.com

Enterprise Application Integration (EAI) and Web Services

What is EAI?
As the need to meet increasing customer and business partner expectations for real-time
information exchange continued to rise, companies were forced to link their disparate systems
to improve productivity, efficiency, and, ultimately, customer satisfaction. The need for IT
systems to communicate within an organization led to the evolution of Enterprise Application
Integration (EAI). EAI is the process of creating an integrated infrastructure for linking
disparate systems, applications, and data sources across the corporate enterprise. The very
origin of EAI solutions can be linked to the need for providing a full duplex, bi-directional
solution to share seamlessly and exchange data between ERP, CRM, SCM, databases, data
warehouses, and other important internal systems within the company.

The following diagram illustrates how EAI can tidy up the connections between disparate
parts of a system:

Internal Applications
(Java, C, C++)

Enterprise Portal
Application

Financial System

ERP System

SCM System

CRM System

Databases

Legacy System

EAI is not an out-of-the-box solution; rather it is an ongoing process of creating a flexible,
standardized enterprise infrastructure that allows new IT-based applications and business
processes to be easily and efficiently deployed. The new infrastructure allows applications
throughout an enterprise to seamlessly communicate with one another in realtime.

Types of EAI
EAI solutions can take on many forms and exist at many levels. The appropriate level of EAI
can depend on many factors including company size, company industry, integration/project
complexity, and budget.

There are four types of middleware solutions to EAI:

D Data-oriented Integration.

41

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

o Function or Method Integration.

o User Interface Integration.

0 Business Process Integration.

Data-oriented Integration

42

Data-oriented integration occurs at the database and data source level within an organization.
The integration is achieved by migrating data from one data source to another. Data
integration is the most prevalent form of EAI in existence today. One of the biggest problems
with data integration, however, is that the business logic usually exists only within the primary
system, limiting real-time transactional capabilities.

Data-oriented integration can be either real time (such as synchronous replication, stored
procedures, virtual data warehouses) or non-real time (such as asynchronous replication, batch
transfer, scheduled extraction, and transformation).

There are a bevy of data replication and middleware tools to facilitate data transfer between
data sources in both real-time and batch modes. Some data integration methods include:

0 Batch Transfer.

o Data Union.

o Data Replication.

o Extract, Transform, and Load (ETL) Solution.

The ETL solution, which is based on an ETL engine extracting, transforming, cleansing, and
loading data from various applications to data warehouses and/ or data marts, has now become
the preferred method for companies to achieve data integration. This is because it is a much
more advanced solution in terms of transforming, routing, and cleaning the data as compared to
data replication or data union. The following diagram illustrates an ETL solution process:

Packaged
Applications .-----,
(CRM. ERP. I

SCM) .

Other
Internal

Applications -'
(C++, Java.

VB)

,_.m
--;==---------.......,= =!==;-, Data Warehouse

ETL
Solution 1
iii
Transient Data

Source

Data Mart

www.manaraa.com

Enterprise Application Integration (EAI) and Web Services

Function or Method Integration

Function or method integration involves the direct and rigid application-to-application (A2A)
integration of cross-platform applications over a network. It can range from custom code
(COBOL, C++, Java), through application programming interfaces (APis), and remote
procedure calls (RPCs), to distributed middleware such as TP monitors, distributed objects,
common object request broker architecture (CORBA),Java remote method invocation (RMI),
message-oriented middleware (MOM), DCOM, and Web Services.

The following diagram illustrates how function or method integration fits in between the
systems to be integrated:

niL lLlL
11 1l

Request

API

lL
Java RMI

Ill CORBA
DCOM

RPC
Web Services

Application A Response Application B

Function or method-oriented integration is primarily synchronous in nature: it's based on
request/reply interactions between the client (requesting program) and the server
(responding program).

User Interface Integration (Refacing)
Refacing is the process of replacing the terminal screens of legacy systems and the graphical
interfaces of PCs with one standardized interface, typically browser-based. Generally, the
functionality of terminal screen applications can be mapped on a one-to-one basis with a
browser-based graphical user interface. The new presentation layer is integrated with the
existing business logic of the legacy systems or packaged applications such as ERP, CRM,
and SCM.

Enterprise business portals may also be considered a sophisticated refacing solution. A
business portal consolidates the presentation of multiple applications into one
customizable browser-based interface. The portal framework acts as a middleware solution
in this type of EAI.

43

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Business Process Integration

While data integration has proved a popular form of EAI, it can present problems from a
security, data integrity, and business process perspective. The vast majority of data within an
organization is accessed and maintained through business logic. The business logic applies
and enforces the required business rules, processes, and security for the underlying data.

Business process integration occurs at the business process level, which spans multiple
applications. It is often characterized by the use of advanced middleware such as message
brokers, which standardize and control the flow of information through a bus or hub-and
spoke framework. The following diagram illustrates applications being integrated by being
combined in one business process:

ll
Application A

Open Business
Process 1L

Application B

Service-Oriented Architecture {SOA)
For true dynamic integration, software resources such as applications, objects, and programs
should be loosely coupled. These resources should make their presence known to the world
and provide public interfaces, which describe their actions. The communication between
these resources and the applications using them should occur based on open standards. Using
these resources, which can be personalized for each user, future applications could be built
dynamically in a fraction of the time that it takes today to build applications using
conventional mechanisms.

This is where SOA comes into the picture. It provides a framework and architecture for
seamlessly interconnecting applications and software components. It gives the ability to
invoke remote business services and install them as local components in a different
application, all without writing a single line of low-level code.

44

www.manaraa.com

Enterprise Application Integration (EAI) and Web Services

Components and Operations of SOA
There are three components of service-oriented architecture. They are:

o Service Provider - This component is responsible for creating and publishing the
interfaces of services, providing the actual implementation of these services, and
responding to any requests for use. Any company or business can be a service provider.

0 Service Broker - This component registers and categorizes public services published
by various service providers and offers services such as search. Service brokers act
like a repository or yellow pages for services. Companies that want to use services
can search these yellow pages to find one matching their needs. Currently several
companies including IBM and Microsoft are acting as service brokers. Companies
can also develop and maintain internal repositories, so a service broker can be an
internally hosted component. In fact, having a Service Broker within an enterprise is
one of the key points of a Web Services integration mechanism within the enterprise.

0 Service Requestor - This component is the actual user of the services. Service
requestors discover services by searching the repository maintained by the service
brokers and then invoke these services by communicating with the actual service
providers. In the case of Web Services, the invocation could take place over the
Internet, or locally over the intranet, in which case the requesting company would
also be the service provider.

The three most basic operations through which the SOA participants interact are:

0 Publishing - This operation allows the service provider to publish its services and
interface requirements with a service broker. WSDL (Web Services Description
Language) is an XML-based language used to perform the operation of describing
interfaces of Web Services.

0 Finding - This operation allows a service requestor to locate, search, and discover
the services, published via a service broker, that are offered in a particular
classification or by a specific service provider. Finding is enabled by the UDDI
(Universal Description, Discovery and Integration) framework.

0 Binding - This operation enables a service requestor to actually bind and use a service
provided by a service provider. Binding is enabled by SOAP-based XML messages.

Service
Provider

'"7 Bind

Service
Broker Find

45

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Web Services
Web Services, built on SOA, are a stack of emerging standards that describe service
oriented, component-based application architectures. They provide a distributed computing
technology for revealing the business services of applications on the Internet or intranet
using open and standards-based XML protocols and formats. The use of standard XML
protocols makes Web Services platform-, language-, and vendor-independent, and an ideal
candidate for use in EAI solutions.

Web Services eliminate the interoperability issues of existing solutions, such as CORBA and
DCOM, by leveraging open Internet standards - Web Services Description Language
(WSDL- to describe), Universal Description, Discovery and Integration (UDDI- to
advertise and syndicate), Simple Object Access Protocol (SOAP- to communicate) and Web
Services Flow Language (WSFL- to define work flows). Take a look at the World Wide Web
Consortium (W3C) web site for details on how the adoption of these languages is progressing,
at http://www.w3c.org/.

Thus, a Web Service is an interface that describes a collection of business operations that are
network accessible through standardized XML messaging and that can be:

o Described using WSDL.

D Published using UDDI.

o Found using UDDI.

D Bound using SOAP (or HTTP GET/POST).

D Invoked using SOAP (or HTTP GET/POST).

o Composed with other services into new services using WSFL.

EAI and Web Services

46

Web Services are not EAI in and of themselves. Rather, Web Services are just another technology
that enables EAI, and can significantly change the traditional point-to-point approach.

Using Web Services that loosely integrate applications, a company achieves just a subsection
or a part of EAI. EAI, on the other hand, takes the holistic approach of tightly integrating and
connecting all applications and systems that support a company's business. EAI takes years of
continued commitment and effort from different business and technical units within the
company, as well as high investment and substantial resources.

Web Services, in their current form of loosely bound collections of services, are more of an ad
hoc solution that can be developed quickly and easily, and published, discovered, and bound
dynamically. In this generation of Web Services, it is possible to achieve only function-level
integration between applications.

www.manaraa.com

Enterprise Application Integration (EAI) and Web Services

They are not transactional in nature and provide basic "request/response" functionality. The
next generation of Web Services, however, are likely to be functionally and technologically
advanced, offering user interface encapsulation, transactions, service context, and security.
They will be able to package an application and embed it into another application.

Web Services will give the independent groups within the IT department of a company an
effective way for managing their systems and applications. Using Web Services, all
applications will expose their methods using the same standard, exchange the data using the
same standard, and use the same connection protocols. This will address the fundamental
problems of multiple data standards and communication protocols associated with EAI today.

Salient Differences between Traditional EAI Solutions and
Web Services

Some of these differences take into account the future enhancements proposed in Web Services.

A few essential differences between traditional EAI solutions and Web Services are
as follows:

0 Simplicity: There is no doubt that Web Services are much simpler to design,
develop, maintain, and use as compared to a typical EAI solution which may involve
distributed technology such as DCOM and CORBA. Once the framework of
developing and using Web Services is ready, it will be relatively easy to automate
new business processes spanning across multiple applications.

o Basis in open standards: Unlike proprietary EAI solutions, Web Services are based
on open standards such as UDDI, SOAP, and HTTP, which is probably the single
most important factor that would lead to the wide adoption of Web Services. The fact
that they are built on existing and ubiquitous protocols eliminates the need for
companies to invest in supporting new network protocols.

o Flexible integration: Since EAI solutions may require point-to-point integration,
changes made at one end have to be propagated to the other end, making them very
rigid and time-consuming in nature. Web Services-based integration is quite flexible,
as it is built on loose coupling between the application publishing the services and
the application using those services.

o Reduced investment: EAI solutions, such as message brokers, are very expensive to
implement. They require a substantial initial investment. Web Services, in the future,
may accomplish many of the same goals more cheaply and faster. Web Services can
be deployed with decreased cost and effort.

o Broader scope: EAI solutions, such as message brokers, in integrating applications,
treat them as single entities, whereas Web Services allow companies to break down
big applications into small independent logical units and build wrappers around
them. For example, a company can write wrappers for different business components
of an ERP application such as order management: purchase order acceptance, status
of order, order confirmation, accounts receivable, and accounts payable.

47

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

o Increased efficiency: As Web Services allow applications to be broken down into
smaller logical components, integration is easier as it is done on a granular basis.
This makes Web Services solutions for EAI much more efficient than traditional EAI
solutions.

o Dynamic rather than static: Web Services provide a dynamic approach to integration by
offering dynamic interfaces, whereas traditional EAI solutions are rather static in nature.

Example of Web Services for EAI
The following diagram shows an example of using Web Services within an organization. In this
example, the portal application running within an application server aggregates information
from multiple internal applications, providing a single point of entry into business processes
spread across those applications. The portal application gets information about Web Services
offered by internal applications using a private UDDI registry and invokes these services over
the intranet. Binding information for frequently used Web Services can be cached by the
application, to avoid the resource-intensive and time-consuming dynamic binding. In this
example, the Web Services loosely integrate portal with CRM and ERP applications.

WSDL
Binding

Information

Siebei·CRM
Provider

Application

SAP·ERP
Provider

Application

3 Get Location
and
Bind

Request

~

UDDI Registr
(private)

..
@ Get User

Personal
Information

5 Get User
Account

Information

The sequence of steps is as follows:

6
Send the
Information
to Users

FireWall

1
Request User
Information

1. After logging on to the company portal, users request personal and account
related information.

48

www.manaraa.com

Enterprise Application Integration (EAI) and Web Services

2. The application supporting the portal framework gets information about Web
Services made available by the CRM and ERP applications by performing a look
up in the private UDDI registry.

3. The location and WSDL binding information of Web Services is sent to the
application server.

4. The application invokes the Web Service published by the CRM application and
retrieves the personal information, such as name, social security number, mailing
address, and e-mail of the user. The communication is based on SOAP.

5. The application invokes the Web Service published by the ERP application and
retrieves the account information, such as account number, balance, and
transaction history of the user. The communication is based on SOAP.

6. The information is then formatted and sent to the user.

Essential Features of a Web Services Framework
A Web Services framework for EAI has to provide an integrated development environment
and platform for easily building and deploying Web Services and service components. There
are a few essential features that Web Services solution vendors will have to incorporate in
order to successfully support Web Services, without which their use and adoption within
companies is not possible. These features are as follows:

o Easy and secured connectivity to private and public UDDI, or any other repository.

0 Effective audit mechanism through which the access and usage of Web Services can
be closely monitored.

o Efficient security safeguards such as policy management and authentication, for the
access and usage of Web Services.

0 Easy development, deployment, publishing, finding, and dynamic binding for Web
Services interfaces.

0 A stable environment for rapid development of Web Services-based applications.

o Workflow Management and Personalization.

49

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

The following diagram illustrates these features:

Connectivity to
Public and Private UDDI

Reliable Messaging

Built-in
registry

Scalable
Execution .----1

Environment

Fallover Capacity
and Load Balancing

Administrative
Tool

Strong Security

Transaction
Management

Integration with
/--_.,Existing Infrastructure

(such as J2EE Servers,
Integration Brokers)

Integration with
Legacy Systems

Development,
Deployment,

and Publishing Tool

Convergence of EAI Solutions and Web Services
The current EAI solutions that predominately focus on integrating applications will have to be
changed significantly, as legacy applications, databases, new in-house applications, and
packaged applications in the future will expose their functions, business methods, and data as
services using technologies such as XML, SOAP, and UDDL Thus, the EAI solutions will
have to provide a broad support for service integration rather than application integration.

Web Services will play a role - major and/ or minor - in all types of EAI (internal applications
and data integration patterns) discussed earlier in this paper.

Data-oriented Integration

50

With all the leading relational databases such as Sybase, DB2, Oracle, SQL Server already
providing direct support for data transfer in an XML format (so there is no need for an
intermediary application to pull the data from the data source and then format it in XML),
Web Services will be crucial in real-time data-oriented integration. Web Services will help
solve one of the most challenging tasks of data-oriented integration - reducing the
discrepancies that exist in different data sources. Since XML documents are verbose and do
make the process a lot slower, however, there is no doubt that the choice of using Web
Services should be based on the nature and volume of data.

www.manaraa.com

Enterprise Application Integration (EAI) and Web Services

Business Process-oriented Integration
Some may consider that most of the features of a Web Services solution, as seen in the
following diagram, are the same as an EAI integration broker solution, which typically
enables business process-oriented integration. This is very true. There will be a huge
convergence of these two, until Web Services becomes just another feature of an EAI
integration broker solution. It makes absolutely no sense to reinvent the wheel by developing
features such as messaging platform and transaction management services.

Already several leading EAI integration broker solution companies such as Tibco, BEA, IBM,
and webMethods have announced support for Web Services in their products.

As depicted in the following diagram, support for Web Services will be just another feature of
integration brokers:

Based on Open
Architecture

Enables Publishing/
Subscribing of
Web Services

Easy to
Administer

Standards-compliant
supports for all Industry

Standards

Business Process
Management: Workflows,

Business Processes
...

Seamless Integration
with Enterprise

Internal Systems

Function-or Method-oriented Integration

Trading Partner
Management

Personalization for
each customer

Secured Transactions
and Connectivity

Scalability and
Transaction Integrity

Adoption of Web Services by the leading software vendors for all packaged applications such
as ERP, CRM, and SCM will largely determine how quickly and how widely companies start
using Web Services for function-or method-oriented integration. All major vendors of
packaged applications such as SAP, PeopleSoft, and Siebel have already announced their
support for Web Services.

Key Differences Between Web Services and RPC/API-Ievellntegratlon

As we mentioned in the previous section, Web Services offer a function-level integration
solution for EAI. In most companies today, RPCs (remote procedure calls) and APis
(application programming interfaces) are used for this type of integration. So, what is different
about Web Services?

51

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

RPCs and APis typically require an agreement between the client (invoking program) and the
server (implementation program) on the use of language, parameters, return types, translation
mechanisms, etc. Web Services are based on XML - the new lingua franca for e-business,
which standardizes the data formats, making the client and server independent of each other.

RPCs and APis offer a static solution for function-level integration, even if they use XML for
client/ server communication. Web Services offer a dynamic approach to integration, where
the services can be discovered, bound to, and used dynamically. This is primarily enabled
because Web Services are found using a defined standard- UDDI.

RPCs and APis can use any proprietary protocol, but Web Services are built and used over
existing, universal protocols such as HTTP and SMTP.

RPCs and APis do not offer servers a standard way of exposing their public methods to
clients. Each server program may have its own implementation. Web Services, on the other
hand, are always exposed by the servers in a standard form using Web Services Definition
Language (WSDL). So the clients and servers do not have to implement their own proprietary
format for using and publishing public methods.

Where to Start?
Companies should start using Web Services in internal application integration projects at the
function, API, or RPC level. This will familiarise the IT staff, as well as the functional and
general management, with the technology issues involved in using Web Services: very helpful
in overcoming the challenges posed later when the company uses Web Services for external
application integration (B2B integration) projects. It is much easier to control, manage, find,
execute, and maintain Web Services within an intranet as compared to using them over the
Internet across the corporate firewall. Further, it would help companies in identifying the
business opportunities inherent in the use of standardized and relatively cheap Web Services
solutions, as opposed to expensive EAI broker solutions. This implies that Web Services will
gradually evolve from an EAI solution to a B2Bi solution over a period of time.

Taking Advantage of Existing Assets

52

It would be utterly naive of companies to scrap the existing EAI infrastructure and blindly
march towards deploying Web Services to replace it. Companies cannot abandon the EAI
middleware frameworks, which provide full transactional services, in favor of Web Services,
which don't (as yet). Instead, they should use Web Services to exploit the existing infrastructure.

Using Web Services, companies will also be able to use the resources they have invested in
implementing any .NET and/orj2EE projects. Web Services technology works hand-in-hand
with .NET andj2EE technologies, rather than as a competing technology. For instance,J2EE
connectors give developers an interface for accessing legacy transactions and data, whereas
Web Services provide a uniform, standards-based technique for exposing application
functionality over the Internet or the corporate intranet.

www.manaraa.com

Enterprise Application Integration (EAI) and Web Services

Build an Internal Repository for Web Services
Early on in their adoption of Web Services, companies should make an effort to develop an
internal centralized service repository for publishing information that internal applications
can use to find information about published Web Services. If each group and department
starts maintaining their own repository, over time there will be several repositories within the
company, making the publishing, discovering, and using of Web Services a painful and a
time-consuming process.

ROI on Using Web Services for EAI
"What will be the return on investment?" is probably the first question that any corporation
would consider before investing any resources in Web Services. The fact that it is a hot
technology and has everyone talking about it is certainly not a good enough reason. So, how
much will companies have to invest in implementing this solution and what will be the payoff,
both near-term and long-term?

There is little doubt that the first Web Service is the hardest to implement. The cost and
difficulty level in business process re-engineering and integration is high. Both these features,
however, fade away with the implementation of subsequent Web Services. Companies can,
thereafter, enjoy the fruits of incremental cost reduction inherent in using XML-based
standards-and-service oriented architectures.

A company should calculate the implementation and ongoing costs associated with Web
Services including software, hardware, system integration, and future production support
expenses. These cost estimates should be carefully examined to determine the ROI for the
proposed solution.

Having said that, if a company does go through the process of Web Service enabling its
internal applications, then the progression from internal applications to exposing them to be a
part of a B2B integration process will be smoother and cheaper.

Bottom Line
Web Services, by themselves, are not the nirvana for EAI. An EAI platform within a Fortune
500 company would still comprise multiple solutions which together would offer both non-real
time and real-time integration, support for managing semantic transformations, business process
integration, and application integration based on open standards and proprietary formats.

53

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Conclusion
Web Services offer a platform-neutral approach for integrating applications, so that they can
be used to integrate diverse systems, in a way supported by standards rather than proprietary
systems. The ability of an enterprise to have access to real-time information spanning multiple
departments, applications, platforms, and systems is one of the most important driving factors
behind the adoption of Web Services. Companies should first start using Web Services for
their internal integration projects for business processes that are non-transactional in nature,
before they venture to use Web Services in B2B integration projects.

Companies will be able to lower their investment cost in implementing a Web Services
solution by building it on top of their existing assets. If a company has invested millions of
dollars to put its EAI infrastructure in place, it makes absolutely no sense to abandon it and
just embrace Web Services.

54

Future EAI solutions will be significantly different from the existing ones, as they will be
focused more on integrating services and less on integrating each individual application. They
will include an integrated development environment and framework for easily building and
deploying Web Services and service components.

www.manaraa.com

Enterprise Application Integration (EAI) and Web Services

55

www.manaraa.com

Authors: Gunjan Samtani and Dimple Sadhwani

• B2Bi fundamentals

• Patterns for 82 Bi

• Web Services in B2Bi

• Limitations of Web Services for B2Bi

Web Services Networks or Intermediaries

www.manaraa.com

Business To Business Integration
(B2Bi) and Web Services

B2B integration is the enabling technology for most current business strategies such as
collaborative e-commerce, collaborative networks, supply chain management (SCM), and
customer relationship management (CRM) across multiple channels of delivery including
wireless devices and the Internet.

What Is 828 Integration {828i)?
B2B integration or B2Bi is about the secured coordination of information among businesses
and their information systems. It promises to dramatically transform the way business is
conducted between partners, suppliers, and customers or buyers. All companies (large,
medium, small, or new) can experience increased growth and success through tightly
integrated partnerships.

Companies from across a variety of industries are embracing B2Bi and realizing the enormous
competitive advantage it provides, through faster time to market, reduced cycle times, and
increased customer service. Through integration of business and technical processes,
companies are able to strengthen relationships with partners and customers, achieve seamless
integration inside and outside the enterprise, gain real-time views of customer accounts,
increase operational efficiencies, and reduce costs. The following diagram illustrates the range
of different sized companies that are embracing B2Bi:

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Large Company

Supplier

0-
Customer

Supplier Customer

D
Customer ...

(::, E-marketplace ill:ii
Supplier

Customer

•

Customer

Customer

Internet

Supplier

Supplier

The market for B2Bi is huge. According to a report published in the post dot-com crash era
from the International Data Corporation group, by 2005 B2B e-commerce will be of the order
of 4. 7 trillion US Dollars. B2B integration is expected to yield productivity gains of over a
trillion USD by 2010.

58

www.manaraa.com

Business To Business Integration (B2Bi) and Web Services

An Intimidating Task
B2Bi is easier said than done - it is indeed a daunting effort. Integration is a big challenge,
especially for global corporations that have hundreds or even thousands of trading partners.
Managing the integration of so many business processes can turn out to be a time-consuming,
complex, and expensive task. With the advent of new technologies, the potential for disparity
further increases, and makes the exchange of electronic information even more complicated.

Essential Features of a 828 Integration Solution
Without the right selection of B2Bi solution(s) that meet your business and technical
requirements, any integration implementation will be doomed. Before a company selects any
B2Bi solution, it has to consider the following:

D Can the solution evolve with the company, with the industry, and with the IT
industry?

D Does it offer comprehensive functionality with the flexibility to support third-party
software vendors, and connect existing and new systems in a common framework?

D Does it work within scalable environments to accommodate customer and trading
partner systems as well?

D Does it support open standards?

So, what are the key features that a company should look for before investing in any B2Bi
software solution?

Firstly, the integration solution should be able to enable any transaction, any time - end-to
end and partner-to-partner. What this essentially means is that a B2Bi solution should be able
to link a company automatically in real time to buyers, sellers, e-marketplaces, and
collaborative networks. It should be able to fully automate real-time exchange of data between
disparate applications using any integration pattern(s).

Secondly, the solution should be able to conduct all transactions securely, maintain audit logs,
etc. This includes transactions for catalog management, order management, supply chain
management, financial, and logistics.

Thirdly, the solution should support diverse sets of file formats, protocols, and security
standards. A company should be able to make a single connection to its B2B integrator and let
it take care of the complex behind-the-scenes work necessary to bridge quickly and painlessly
the electronic protocol gap between its partners, vendors, and customers.

59

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Fourthly, the solution should he based on open standards that allow a company and its
partners to send transactions using any combination of applications and file formats,
telecommunication pathways, communication protocols and B2B protocols, and XML
standards such as RosettaNet, ehXML, OAG, Biztalk, OBI, etc. The solution should also
provide support for Web Services.

Lastly, the solution should he scalable, that is, companies should he able to scale it
horizontally and vertically. Further, it should offer robust load-balancing features, critical to
the success of large applications.

A few leading B2Bi solutions include: IBM MQSeries Integrator; Extricity; BEA eLink;
wehMethods B2B Enterprise; Mercator Enterprise Broker, WehBroker, CommerceBroker;
NEON eBusiness Integration Servers; SeeBeyond e*Exchange eBusiness Integration Suite;
Tihco ActiveEnterprise, ActivePortal, ActiveExchange; Vitria BusinessWare; CrossWorlds
Software; and Microsoft BizTalk Server.

Conventional B2Bi Patterns
There are several integration patterns that a company can use to achieve B2Bi. The choice of
which integration pattern to choose depends on the agreement with the trading partners,
existing infrastructure, and integration goals, such as the level of synchronization and degree
of autonomy desired.

Companies can achieve B2Bi using one or more of the following integration patterns.

Portal-Oriented Integration

60

Portal-oriented integration is a quick way for small to medium-sized companies to provide
data access to customers and trading partners through a W eh-hased interface. The following
diagram illustrates how portal-oriented integration provides one place for several customers to
gain access to the fruits of integration:

Compa~ B

www.manaraa.com

Business To Business Integration (B2Bi) and Web Services

Data-Oriented Integration
Data-oriented integration
provides data access interface
abstraction. It always involves
data sharing and can result in
communication between an
application and a data source or
two data sources. It can be
schedule-or event-driven,
depending on the type of
integration pattern used, such as
synchronous replication or
asynchronous replication, data
warehouses or virtual data
warehouses. The following
diagram illustrates how data
oriented integration links
applications through shared data
sources:

Application-Oriented Integration

Application-oriented integration involves
API or RPC communication between
application components, which may or
may not involve data. Since cross
organization applications have to be
integrated directly in this pattern, the
participating companies have to work very
closely to develop the applications jointly.
Companies have less autonomy in this
integration pattern, thus making it the least
suitable for most B2Bi implementations.
This type of integration, however, is
synchronous in nature: the data is shared
on a real-time basis. The following diagram
illustrates how application-oriented
integration brings several disparate
applications together into one place:

.

lLILlL

"

-

Company A

llll
lL

Company A

---,

-

I
ijj

Company B

Company B

61

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Business Process-Oriented Integration

Business process-oriented integration provides process interface abstraction that maintains the
integrity of business rules. This integration type is increasingly being used by companies as it
not only aims at integration, but also at making the business processes of a company more
efficient by eliminating latency. Moreover, this integration type gives companies complete
autonomy in terms of how they want to conduct their business, as long as they are able to
communicate with their trading partners based on certain predetermined standards. The
following diagram illustrates how business process-oriented integration brings several
applications together by linking them into the same business process:

ll

[j

Company A C<>mpany B

Factors Involved in Your Choice of Integration Pattern

62

To achieve B2Bi, your company will have to adopt one or more of the integration patterns
discussed in the previous section of this paper. Irrespective of the integration pattern or a
combination of multiple patterns that you employ for B2Bi, the final goal is to achieve real-time,
secured access to internal corporate and external (suppliers, partners, and customers) data,
which allows dynamic collaboration. The integration strategy should be in line with your
company's business and technology environments, and short-term and long-term business goals.

There are several criteria that can guide you to determine which approach best suits your
integration goals. The most important ones are:

o Will the integration be real-time?

o What is the level of complexity of a given solution?

www.manaraa.com

Business To Business Integration (B2Bi) and Web Services

o What is the degree of synchronization achieved in the integration?

o Is the solution robust and scalable enough to handle your integration needs?

0 Is the solution flexible enough to adapt to your company's business processes?

o What is the level of autonomy or independence that your company will have in
implementing the solution?

0 How closely will the participating companies have to work in order to achieve
integration based on the solution?

The following diagram shows the level of synchronization achieved in using different modes
of integration:

.... Asynchronous Replication (Delayed)

.... Data Warehouses

.... Data Marts

.... Transient Data Sources

Non-real-time
(Data Integration) -----

.... Asynchronous RPCs

.... Asynchronous API Calls

.... Message Queuing

.... Message Brokers

.... Publish and Subscribe

Non-real-time
(Application Integration)

I
I

.... Virtual Data Warehouses

.... Synchronous Replication

.... Multi-database Servers

.... Database Access APis

Real-time
(Data Integration)

ynchronous RPCs _]
ynchronous API Calls
bject Request Brokers
P Monitors

Real-time
(Application Integration)

B2Bi involves forming formal agreements among the trading partners to decide various factors
involved in integration such as level of integration, pattern of integration, scope of integration,
data formats, and XML standards. These agreements are dynamic in nature and are
continuously changing with the business environment and needs.

The Role of Extensible Markup Language (XML) in B2Bi
XML has become the lingua franca of the B2B e-business revolution. It has created a
mechanism to publish, share, and exchange data using open standards over the Internet.
There is little doubt that in the future XML will be used in each and every B2B application.

XML is not, however, an integration solution in itself- it is just a data definition language.
Without global XML standards there can be no seamless business among companies spread
out all over the world. These standards are a common set of industry-specific definitions
representing business processes.

63

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

For XML messages to be interpreted by all companies participating in B2Bi they need to
agree on a common XML-based B2B standard, which will define the document formats,
allowable information, and process descriptions. These standards are like a common currency
for conducting business. If companies use the same currency to do business then there is no
need to convert one currency into another, based on today's conversion rate. In a similar way,
communication based on these standards will be accepted and understood by every other
company that is using the same standards.

The need for industry-wide B2B e-commerce standards in vertical industries is becoming
increasingly critical and obvious. Several organizations have been working to define these
market-segment-specific defmitions. Standards such as RosettaNet, CIDX, and OASIS are
making it possible for companies to share information with one another without having to
completely re-engineer their internal applications. These standards will automate the flow of
information across all companies within a given industry, independent of the underlying
software or hardware infrastructure supporting the activities related to these transactions.

Web Services and B2Bi
Web Services, which are based on XML standards, are a boon to the world of B2B, for the
reason discussed in the previous section. XML-based standards hold the key to the success of
dynamic B2Bi and its widespread adoption by companies of all sizes. Web Services are based
on the following open standards: Web Services Description Language (WSDL- to describe),
Universal Description, Discovery and Integration (UDDI - to advertise and syndicate), Simple
Object Access Protocol (SOAP- to communicate) and Web Services Flow Language (WSFL
to defme work flows).

Thus, Web Services use SOAP-based messages to achieve dynamic integration between two
disparate applications. Companies use WSDL, a Web Services standard, to describe their
public and private Web Services, and publish their Web Services either to a private or public
repository and directory using UDDI.

Essential Features of 828 Applications and Web Services
Let's discuss how Web Services fit in with some of the essential traits of B2B applications.

Distributed Transaction Management

64

It is very tough to maintain distributed transaction control even within disparate systems and
applications within an enterprise. B2B transactions may be spread over disparate systems and
applications across different enterprises, making them several times more difficult to maintain
and control.

In their current state, Web Services are not transactional in nature and provide basic
"request/response" functionality.

www.manaraa.com

Business To Business Integration (B2Bi) and Web Services

Security

B2Bi requires two levels of security. Firstly, B2Bi necessitates opening up corporate firewalls
to enable cross-boundary communication between enterprises. Thus, whatever mode of
integration is used, companies have to secure their internal network against malicious attacks
through these open ports.

Secondly, the data transmitted over dedicated leased lines, such as EDI, Internet, or any other
mode, has to be secured. The data may contain classified information, such as corporate
information and business transaction information, and thus cannot be left unguarded.

In their current state, Web Services lack broad support and facilities for security. Thus, Web
Services-based B2Bi architecture may potentially have big security loopholes.

Dynamic Approach

For companies to participate in true dynamic business with other companies, integration
between the systems of the two companies has to happen in real time. Further, this integration
is only possible if B2Bi is done using open standards over the Internet.

Web Services do provide a dynamic approach to integration by offering dynamic interfaces.
Web Services are based on open standards such as UDDI, SOAP, and HTTP, and this is
probably the single most important factor that would lead to the wide adoption of Web
Services for B2Bi.

Integration Mode

The integration mode or pattern is the most important element of B2B integration. Is the B2Bi
data-, business process-, application-, function-, or portal-oriented? The answer to this
question determines a lot of answers involved in the modalities and technology used for B2Bi.
Typically in B2B integration, companies involved take a joint decision based on the
technology available in-house, budgets, and level of synchronization needed to support
business functionalities.

In this generation of Web Services, it is possible to achieve only function-level integration
between applications (for details on the difference between function-level integration using
API or RPC and Web Services, please refer to our paper "Enterprise Application Integration and
Web Services").

The next generation of Web Services, however, will be functionally and technologically
advanced, offering user interface encapsulation and security. They will be able to package an
application and embed it into another application.

Example of Web Services for B2Bi

The following diagram shows an example of using Web Services in a B2Bi scenario. In this
example, the corporate procurement application running within an application server requests
quotes from multiple vendors. The procurement application of the buyer gets information
about Web Services offered by suppliers using a private UDDI registry and invokes these
services over the Internet to get quotes for a specific item.

65

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

3

UDDI Registry
(Private)

Application
Server

...
1 Get

Purchase
Order

-4 --

Database

Supplier

The sequence of steps is as follows :

_J

FireWall

Invoke Web
Service to
Get Quote

QIJ
Supplier A

~ Q
Internet

_/ Supplier B

c:t:r:~~ .QIJ
Supplier C

1. The buyer's procurement application, running within an application server, has to
generate a purchase order for a specific item.

2. The procurement application gets information about Web Services from different
suppliers for that specific item by performaning a look-up in the private UDDI registry.

3. The location of and WSDL binding information for the Web Services is sent to
the procurement application.

4. The application invokes the Web Services published by the suppliers to get
quotes for that item. The communication is based on SOAP over the Internet.

5. The application receives quotes from different suppliers. The communication is
based on SOAP over the Internet.

6. The information is then analyzed, leading to the creation of the purchase order.

Web Services Networks

66

The use of Web Services for B2Bi will be enabled through the emergence of trusted managers
known as Web Services Networks. Web Services Networks will be built on open Internet
standards including Web Services. They will take on the responsibility for managing the security,
trading partner agreements, guaranteed messaging, audit trails, fault tolerance, load balancing,
transaction management, versioning, publishing, finding, and deploying Web Services.

www.manaraa.com

Business To Business Integration (B2Bi) and Web Services

They will help in overcoming the biggest hurdle of using third-party Web Services for B2Bi -
the inherent unreliability of unqualified sources. Grand Central Network and Flamenco
Networks are examples of such Web Services Networks.

It is worth mentioning, though, that over time there will be too many such networks, and
companies will have to make diligent choices about joining them. Most of these networks will
meet the same fate as several e-marketplaces, which sprang up all over and gradually started
disappearing.

An Example of B2Bi Enabled Through a Web Services Network

We will expand on our example of B2Bi and Web Services presented earlier in the paper. In
this example, the buyer's procurement application utilizes SOAP-based communication,
across the firewall and over the Internet, with the Web Services Network. The buyer's
application is the Web Services client, which makes a request for quotes for a specific item.
The Web Services Network maintains information about public Web Services offered for
requesting quotes by different vendors. It invokes the Web Services of these vendors and gets
information about the quotes and passes it on to the buyer's application.

Database

1
<4- -Get
Purchase '---,,-----'

Order

Receive-1 i
Quotes and L_____.
5 Select a FireWall

Supplier

The sequence of steps is as follows:

UDDI Registry
(Public)

WSDL
,.__., Binding

Information

Invoke Web

Supplier A

Web
.,.. Services

Network
lnt~ne) ... iiJ

Supplier B

("
• Internet

1. The procurement application of the buyer, running within an application server,
has to generate a purchase order for a specific item.

67

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

2. The procurement application passes on the request to the Web Services Network
using SOAP-based messages.

3. The Web Services Network application looks up a public UDDI registry to get
information about Web Services from different suppliers. The location of and
WSDL binding information for Web Services is sent to the Web Services Network
application.

4. The Web Services Network application invokes the Web Services published by
the suppliers to get quotes for that item. The communication is based on SOAP
over the Internet.

5. The Web Services Network application passes on the quote information from
different suppliers to the buyer's procurement application. The communication is
based on SOAP over the Internet.

6. The information is then analyzed, leading to the creation of the purchase order.

Conclusion

68

Web Services certainly have the potential to redefine the whole paradigm of B2B integration
by making it truly dynamic, easily implemented in a modular fashion, and, in the longer run,
cheaper. The application of Web Services for B2Bi, however, will be limited if services for
authentication, encryption, access control, and data integrity are not available. Web Services
intermediaries that provide services such as UDDI repository hosting, security services,
quality assurance of Web Services, performance checks, etc., will have a big role to play in the
B2Bi space.

www.manaraa.com

Business To Business Integration (B2Bi) and Web Services

69

www.manaraa.com

Authors: Gunjan Samtani and Dimple Sadhwani

• Integration Broker Fundamentals

• Integration Broker Architectures

• Integration Broker Services

• Integration Brokers and Web Services

ROI for Web Services Integration Brokers

www.manaraa.com

Integration Brokers and Web
Services

An integration broker, built primarily on messaging middleware, provides an end-to-end
integration platform addressing the critical business components required to completely
automate business processes across the extended enterprise, including the trading partners. It
provides wide-ranging, pre-built application adapters and bi-directional connectivity to
multiple applications, including packaged and mainframe applications.

An integration broker extracts data from the source node at the right time, transforms the
data, converts the schema, and routes the data to the target node. Here, the node can be an
application, a program, or a person - as defined in the business process workflow.
Communication between applications and an integration broker occurs mostly in the form of
messages. An integration broker also provides a repository for archiving, searching, and
retrieving these messages.

An integration broker does not replace traditional middleware as MOM, RPC, and distributed
TP monitors. It is rather built on top of existing middleware technology, most often on
messaging middleware. Therefore, in this paper we will focus on integration brokers built on
messaging middleware, also known as message brokers.

Examples of integration broker solutions include: IBM MQSeries Integrator; Extricity; BEA
eLink; webMethods B2B Enterprise; Mercator Enterprise Broker, WebBroker,
CommerceBroker; NEON eBusiness Integration Servers; SeeBeyond e*Exchange eBusiness
Integration Suite; Tibco ActiveEnterprise, ActivePortal, ActiveExchange; Vitria
BusinessWare; Cross Worlds Software; and Microsoft BizTalk Server.

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Integration Brokers Enable a Best-of-Breed (BOB) Approach
A typical medium-to large-sized company needs multiple applications that collectively support
its entire business operation. No single software vendor can provide all these applications with
elaborate functionalities for each industry.

Integration brokers enable enterprises to select solutions from different software vendors that
provide greater domain expertise and functional support. They provide this flexibility in
selection by virtue of providing bidirectional adapters for a wide range of applications,
thereby enabling their integration. Integration brokers integrate these diverse applications by
sending, receiving, transforming, and routing messages in a secure way, possibly based on
open standards such as XML.

With the use of an integration broker, for example, a company could implement Clarify
CRM, PeopleSoft Human Resources, Ariba e-Procurement, Oracle Financial, i2 SCM, and
SAP Utilities.

Architecture of Integration Brokers
Integration brokers are based on one of two distinct fundamental physical architectures: hub
and-spoke and message bus. Another derived architecture, known as multi-hub, connects several
integration brokers, each of which is based on hub-and-spoke or message bus architecture.

Let's have a closer look at these architectures:

Hub-and-Spoke Architecture

72

In a hub-and-spoke architecture, there is a central server (hub) to which all internal and
external applications (spokes) are connected. The central server is actually the integration
broker that provides all the integration services. The addition of any new application is
extremely simple in this architecture: it only needs to be plugged into the hub. From there on,
it can communicate with any other application also connected with the hub (via the broker).
Administration of the integration broker is fairly simple in this architecture, as everything is
managed centrally.

The centralized nature of this architecture, however, is also its biggest drawback. If, for instance,
connectivity to the integration broker is down due to network errors, then the entire system
would come to a standstill. No application, internal or external, will be able to communicate
with another. To avoid such situations, this architecture requires a clustered solution in which
multiple instances of integration brokers run on different physical machines. For example, ERP
(Enterprise Resource Planning) systems from one company, SCM (Supply Chain Management)
systems from another, a CRM (Customer Relationship Management) package from a third, and
a mainframe legacy system can all be linked with an integration broker:

www.manaraa.com

Integration Brokers and Web Services

ERP System
(SAP. PeopleSoft,

Baan)

Adapter

1
Adapter

~ ~ ~ >
Legacy System Integration c. SCM System

(Mainframe)
.g.--..g

Broker
~.--..g (i2, Manugistics) <; CD ~ co ,

Adapter

Ad:o1er

CRM, System
(Clarify, Siebel)

Note that for bidirectional connectivity, we need to install adapters at each end of the
connection, as shown in the preceeding diagram. This architecture is suitable for small to
medium-sized enterprises, which have relatively fewer internal and external applications with
which to integrate. The most widely used integration brokers based on this architecture are
from webMethods, CrossWorlds, and Vitria.

Message Bus Architecture
In a message bus architecture, the message bus forms the backbone communication link to
which all applications are connected. Every message that flows between applications travels
via the bus to the integration broker, which transforms, translates, and routes the message to
the receiving application.

The addition of new applications is also simple in this architecture. The integration broker
suite would provide either a prepackaged adapter for the application or APis to build an
adapter. After the new application is connected to the bus, it can communicate with all the
applications that are connected to the bus. It is not reasonably possible for an integration
broker solution to have pre-built adapters for all kinds of applications and thus it should
provide the flexibility of building custom adapters.

73

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

ERP System
SCM System J CRMSys~ (SAP. PeopleSoft .

(12. Manugist ics) (Clarify, Siebel)
Baan)

Adapter Adapter Actapter
! ~ ~

Metadata
Adapter Adapter Adapter

Repository
Message Bus

Adapter Adapter Ada.fter ...
! I

~ ~

Adapter Adapter~ Adapter

Integration I Databases Legacy System
Broker [Oracle, Sybase) (Mainframe)

In this architecture, the integration broker should be viewed as "just another service on the
bus" and not as a hub. Since this architecture is distributed in nature, it offers better scalability
and performance. It is more suitable for large companies, which have a relatively large
number of internal and external applications with which to connect. The most widely used
integration brokers based on this architecture are from Tibco and SeeBeyond.

Multi-Hub Architecture

74

A multi-hub architecture is characterized by the presence of multiple integration brokers, each
one of which has many applications connected to it. This configuration links together all the
different integration brokers. The connectivity of the brokers is transparent to the underlying
applications. Through their respective connection with an integration broker, they are
integrated with all the other applications linked to different brokers in the system.

This architecture is very useful as a scalable solution, where multiple instances of the same
integration broker can be deployed on different physical machines. More such instances can
be added if the number of applications to be integrated increases, or the current solution is
slow due to overload.

~

Application

Application ~

"' Appllcatoon

www.manaraa.com

Integration Brokers and Web Services

Services of Integration Brokers

The points mentioned below are generic and are not written for any specific integration
broker solution. Thus, at several places you will find statements such as "an integration
broker should ... "It is worth mentioning that companies should evaluate their integration
broker solutions based on these points.

Integration brokers provide the following essential services:

Enable All Types of Integration
The first and foremost feature of any integration broker is to enable all types of integration
needs within an organization, and in an extended organization through translating, routing,
and tracking of all types of data. They have to enable A2A (application-to-application), B2B
(business-to-business), and B2C (business-to-consumer) integration, thereby eliminating the
need for an individual software solution for each type of integration. There may be a few
exceptions and qualifications on enabling all types of integration needs, which will primarily
depend on the actual integration broker solution used by the company. Each broker has its
own features and services.

For small to medium-sized organizations that do not have the resources to implement
advanced B2B systems, integration brokers should provide functionality for rapidly
developing B2B portals to enable Web-based participation in business processes.

I nteroperabil ity
Integration brokers should provide seamless interoperability with existing applications
irrespective of the programming language (such as java, C, C++, and COBOL) in which they
were developed, or the platform (such as Windows, Unix, and mainframe) they run on. This is
typically achieved using adapter and messaging technology based on open standards such as
XML and SOAP.

Open Architecture
Integration brokers should provide open, non-invasive, and scalable architectures that support
all the leading distributed computing architectures such as COM+, CORBA, andj2EE. The
following diagram illustrate the advantages of an integration broker platform, and the services
it offers:

75

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Based on Open
Architecture

Enables Publishing;
Subscribing of
Web Services

Easy to
Administer

Standards-Compliant
supports for all Industry

Standards

Business Process
Management: Workflows,

Business Processes

Seamless Integration
with Enterprise

Internal Systems

Trading Partner
Management

Persona lization for
each customer

Secured Transactions
and Connectivity

Scalability and
Transaction Integrity

Support for All Communication Protocols

76

Integration brokers should provide support for all the data transmission protocols for B2B
application integration. Some of the most commonly used communication protocols include
FTP, HTTP, HTTPS, EDI, e-mail (POP, SMTP), WAP, SNA, and TCP/IP.

As depicted in the following diagram, in a typical B2B scenario a company can exchange data
with other companies through multiple channels.

JMS

Large Enterprise

HTTP

Medium Enterprise

Large Enterprise
FTP

Small Enterprise

Email • Small Enterprise

www.manaraa.com

Integration Brokers and Web Services

Directory Services
As seen in the multi-hub architecture figure, a real-world implementation is completely
distributed in nature, with multiple instances of integration brokers connecting several
applications and middleware resources.

The directory service of an integration broker is like a yellow pages that maintains an index of
all source and target applications along with their location, communication protocol, and use.
It provides a single point of entry, also known as a gateway, along with search facilities for all
the applications and resources connected by the broker(s).

Trading Partner Management and Personalization
Integration brokers should provide a meta data repository, which can store the
definition, preferences, and technical specifications (such as communication protocol,
XML/EDI standard, delivery channel, and security requirements) unique to each
trading partner relationship. Storing all this information would greatly speed up
conducting business and would enable companies to offer personalized services to each
customer, supplier, and distributor.

Security
Integration brokers should provide a complete security solution using encryption, PKI, digital
authentication, digital certificates SSL, and S/MIME encryption. They should also maintain a
transaction audit trail through which data privacy, data integrity, and transaction non
repudiation (non-repudiation of origin and non-repudiation of receipt) can be ensured.

Scalability
Integration brokers should provide a scalable platform that can support a company's business
today and for years to come. They should be optimized for multi-processor systems and
enable load balancing and failover solutions through a clustered architecture.

Transactional Integrity
An integration broker must provide transactional integrity (event-based processing, exception
handling and built-in recovery) at every step, activity, and node for each transaction and
business process that flows through it.

Typically, a business transaction is composed of several logical units of work, and each unit of
work must complete successfully in order for the transaction to be committed. If even one unit
of work fails, the whole transaction fails and all completed units of work have to be rolled
back (reversed).

77

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Since a business transaction may involve updating multiple databases it may take a long time
to complete. If a database being updated by an application through messages is unavailable,
the integration broker should store the message and make it available to the application when
the database is up again.

Web Services
Web Services expose applications supporting business operations, encapsulating business
logic, and accessing business data over the network or Internet using interfaces that can be
invoked. Their main advantage is that companies can use Web Services interfaces for process
management, logic transformation, and integration of legacy and packaged applications,
instead of writing non standards-based custom code for each application.

Web Services can potentially be used for two distinct domains - enterprise application
integration (EAI) and business-to-business integration (B2Bi). EAI is the process of creating an
integrated infrastructure for linking disparate systems, applications, and data sources within
the corporate enterprise. B2Bi is the process of secured coordination of information among
businesses and their information systems, enabling cross-enterprise business applications such
as collaborative e-commerce, collaborative networks, supply chain management (SCM), and
customer relationship management (CRM) across multiple channels of delivery including
wireless devices and the Internet.

Will Web Services Become Just Another Service of
Integration Brokers?

78

Yes, undoubtedly. Integration brokers should provide the ability to create, test, deploy, publish,
and manage Web Services and subscribe to a business partner's Web Services as an out-of-the
box solution. This would enable the enterprises to convert quickly the existing applications into
Web Services. They would include an integrated development environment and framework for
easily building and deploying Web Services and service components. This should include:

D Support for SOAP - An integration broker should be able to generate and
exchange Web Services request and response SOAP-based messages.

o Support for Web Services Standards -An integration broker should provide
complete support for Web Services standards including SOAP (as above), UDDI,
WSDL, and XML.

D Security - An integration broker should be able to exchange Web Services
request and response XML messages (based on SOAP) in a secured manner
over multiple Internet protocols such as HTTP, HTTPS, FTP, and SMTP. It
should provide easy and secured connectivity to private and public UDDI, or
any other repository. Further, an integration broker should provide efficient
security safeguards such as policy management and authentication, for the
access and usage of Web Services.

www.manaraa.com

Integration Brokers and Web Services

o Transactional Integrity - Transactional integrity is one of the single most
important factors that would determine the winners among the integration broker
solutions that offer Web Services support.

0 Auditing - An integration broker should provide an effective audit mechanism
through which the access and usage of Web Services can be closely monitored.

o Monitoring - An integration broker should provide a monitoring solution to keep
track of the current health of the Web Services network.

o Development - An integration broker should support easy development,
deployment, publishing, finding, and dynamic binding for Web Services interfaces. It
should provide a stable environment for rapid development of Web Services-based
applications.

0 UDDI Connectivity - An integration broker should provide easy connectivity to
internal (private) and external (public) UDDI registries. Based on the registry type,
there may be a need of an adapter or multiple adapters.

o Workflow Management- Workflow management through which usage of Web
Services in a business process can be defined is one of the key requirements of an
integration broker.

Connectivity to
Public and Private UDDI

Reliable Messaging

Built-in
registry

Scalable
Execution '4------1

Environment

Failover Capacity
and Load Balancing

Administrative
Tool

Strong Security

Integration with
1----+_Existing Infrastructure

(such as J2EE Servers,
Integration Brokers)

Integration with
Legacy Systems

Development,
Deployment

and Publishing Tool

Easy Connectivity with Third-Party Web Services Solution
Integration broker vendors may decide to use a third-party Web Services solution, instead of
developing their own. In this case, the third-party solution would be a very lightweight
application server that would implement support for Web Services protocols.

79

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

The support for other protocols, such as DCOM, COM, COM+, and CORBA would continue
to be provided by the integration broker. In order for this to work, the integration between
integration broker solution and third-party Web Services solution has to be seamless, easy,
secured, and robust, most likely using adapters.

An Example of Integration Brokers and Web Services
Here we will take an example of using integration brokers and Web Services in both an
enterprise application integration (EAI) and a business-to-business integration (B2Bi) scenario.

In this example, the integration broker of Company A invokes the Web Service (Product
Shipment Status) of Company B over the Internet, receives the response from the integration
broker of Company B, and invokes Web Services published by SCM and ERP systems in
house to update the product shipment status information.

The sequence of steps is as follows:

Integration Broker and Web Service for B2Bi

1. Company A's integration broker gets information about Company B's Web
Service (Product Shipment Status) by performing a look-up in the private UDDI
registry. This private UDDI registry is used for all external services, in this case,
Web Services used for B2Bi.

2. The location of, and WSDL binding information for, the Web Services is sent to
the integration broker of Company A.

3. The integration broker invokes the Web Service published by Company B to get
the status of the product shipment. The communication is based on SOAP over
the Internet.

4. The integration broker of company B receives the Web Service request and gets
the information of the product shipment from its ERP system.

5. The integration broker of Company B sends the Web Service response. Again,
the communication is based on SOAP over the Internet.

It is worth mentioning here that this communication can be based on XML standards defined
for business processes for the vertical industry to which Company A and Company B belong.
As an example, if Company A and Company B belong to the electronic components industry,
the request from Company A and the response from Company B can be based on
RosettaNet's PIP. Other such examples of B2B XML standards include ebXML and cXML.

Integration Broker and Web Service for EAI

80

6. On receiving the response, Company A's integration broker gets information about the
ERP and SCM packages' Web Service (Product Shipment Status) by performing a look-up
in the private UDDI registry. This private UDDI registry is used for internal services, in
this case Web Services used for EAI.

www.manaraa.com

Integration Brokers and Web Services

7. The location of and WSDL binding information for the Web Services published
by the SCM and ERP systems is sent to the integration broker of Company A.

8. The integration broker invokes the Web Service and updates the product
shipment information in both SCM and ERP packages.

WSDL

2 Get Location
and
Bind

Request

Binding •
information I ~M

tSI

WSDL

UDDI Registry
lor B2Bi (Private)

7 Get Location
and
Bind

Request

Binding •
Information

(Private)

Shipment Status

8 Update
Product

Shipment Status

Product Shipment Status
Web Service Request

Company
A

Company
B

Product
Shipment Status

Web Service Response

UDDI Registry for EAI and 8281

Get
Product
Shipment
Status

A point worth mentioning in this example is that we used two different UDDI registries - one
for maintaining information on internal Web Services used for EAI, and the second for
external Web Services. It is important for companies not to mix information about Web
Services used for two separate domains - EAI and B2Bi.

Existing Integration Broker Infrastructure and Web Services
If a company has invested millions of dollars to put its integration broker infrastructure in
place, it makes absolutely no sense to abandon it and just embrace some other Web Services
solution. Several integration broker vendors, such as TIBCO, Sybase/Neon, Vitria,
webMethods, SeeBeyond, and Mercator are already providing support for Web Services in
their products. Companies can now use the same integration broker technology to launch
Web Services initiatives.

81

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

The addition of Web Services support to the existing integration broker solution would allow
companies to easily integrate internal and external applications. This would be based on
services that defme and implement business flows and processes with internal groups within
an organization, and external trading partners, customers, and suppliers. Companies will be
able to achieve faster and more efficient results, and a higher ROI, if the integration broker
provides this functionality by enabling the design of internal and external business process
transactions that directly call upon applications, databases, and systems without additional
custom programming.

As a starting point, companies should identify areas where the usage of Web Services really
makes sense. Just because a new technology is being talked and written about everywhere is not
a good enough reason to pour hundreds of thousands of dollars into it, especially when the Web
Services standards are still evolving. Further, Web Services are not the fastest of solutions
available for application integration, as, typically, they will require dynamic UDDI look-up and
binding which are time consuming processes for mission-critical real-time applications.

Another point worth mentioning is that companies should first start using Web Services for
their internal integration projects for business processes that are non-transactional in nature
using existing integration broker technology, before they venture into the use of Web Services
in B2B integration projects.

Conclusion

82

Integration brokers offer a proven scalable and systematic middleware solution for both
enterprise application and business-to-business integration. They offer a much neater, more
manageable, and more scalable solution than traditional point-to-point application integration.

Web Services offer a platform-neutral approach for integrating applications, so that they can
be used to integrate diverse systems, supported by standards rather than proprietary systems.

Leading integration broker solutions have already started supporting Web Services as one of
their services. Companies will be able to lower their investment cost in implementing Web
Services solutions by building on top of their existing assets.

www.manaraa.com

Integration Brokers and Web Services

83

www.manaraa.com

Author: Kapil Apshankar

• ERP Business Drivers

• ERP Methodology

• Web Services and ~RP Issues

www.manaraa.com

ERP and Web Services
The Third Wave

Introduction
Every major technology goes through a series of revolutions or "waves" with each wave
building upon the generation before it. ERP is no exception. The first wave of ERP was the
onset of computers in manufacturing. This was followed by a wave where specialized ERP
applications began to emerge. Web Service-based ERP solutions constitute what can be
appropriately termed as the Third Wave in Enterprise Resource Planning. This paper looks at
what such solutions have to offer and who the major players in the foray are. We also take a
look at solution architectures for the two immediate application areas of such solutions.

Enterprise Resource Planning is a generic term for the broad set of activities facilitated by
multi-module application software that helps businesses manage their important facets. ERP
also includes application modules for the finance and human resources aspects of a
business. Typically, an ERP system uses or is integrated with a relational database system at
the back end.

ERP annihilates the old standalone computer systems in finance, HR, manufacturing, and the
warehouse, and replaces them with a single unified software program divided into modules
that roughly approximate the old standalone systems. All the departments still get their own
systems, except now the software is linked together so that someone in finance can look into
the warehouse system to see if an order has been shipped. Most ERP vendors ensure that
software is flexible enough to install some modules without buying the whole package. Many
companies, for example, will just install an ERP finance or HR module and leave the rest of
the modules for a sunny day.

www.manaraa.com

Kapil Apshankar

This is what the installation manuals, product brochures, and marketing campaigns claim. In
the field, however, it's often not as rosy as it looks. There are many things that go into
deciding the fate of an ERP application - planning, foresight, business requirements, and
change management. ERP applications are notorious for configuration issues, which can make
or mar their fate. What Web Services provide is that they minimize risk and investment, and
allow organizations some amount of flexibility in terms of cross-vendor integration.

ERP is both a product and a methodology for delivering a product. As a methodology, it
manifests in the planning and consultation that goes behind implementing it as a product
based solution.

The Business Drivers Behind ERP

86

No solution would be embraced by the industry unless it is economically promising.
Businesses accept ERP because it carries in its wake the promise to alleviate hitherto
unsolved chronic problems. But to be objective there are many public cases that have gone
through the courts in America in particular where the promise turned into an unhappy and
financially costly experience. We may not want to play down the difficulties faced by the
companies and the ERP supplier companies; the task can be massive and highly complex
and can span years - so financial and productivity gains may be subject to a dynamic set of
contingencies. It is further suggested that this is why many companies stick with only one or
two modules. The following points are the key business drivers:

1. Integrate financial information: ERP creates a single version of internal
information that cannot be questioned or doubted because everyone uses the
same system.

2. Integrate customer order information: ERP facilitates a single point of view of
customer information in the enterprise.

3. Standardize and speed up manufacturing processes: Often multiple business units
across a company make the same widget using different processes and
methodologies. Standardizing these processes and using a single, integrated
computer system can save time, increase productivity, and reduce payroll
expenditure.

4. Reduce inventory: ERP helps the manufacturing process flow more smoothly, and
it improves the visibility of the order fulfillment process inside the company.
Ideally we also need supply chain software in this scenario, but ERP is paramount
because it facilitates the services just in time. There are specialized solutions
emerging in this field that complement each other. Take for example i2
(http://www.i2.com/); i2 solutions combine planning and decision making with
the execution phases of value chain management. The solutions they provide can
be seen as a specialization of the SCM part of ERP, although sometimes they are
direct competitors with the big ERP vendors.

www.manaraa.com

ERP and Web Services - The Third Wave

5. Standardize HR information: Especially in companies with multiple business units,
HR may not have a unified, simple, and all-pervasive method for tracking
employee information, benefits, and services. ERP can fix that. This results in
improved employee satisfaction and helps clear communication lines.

The Journey So Far
The concept of ERP is not new. It has existed since the dawn of civilization as Neolithic
merchants sought to increase their business efficiency by using certain rules of thumb, passed
down from the previous generation and refined by experience. Traders following the Silk
Route always returned back home just in time for summer when they knew demand would be
high for their products and inventory could be kept at a minimum. This could be looked upon
as ERP in its most rudimentary form. Times have changed, and along with them the
terminologies; the basic guiding principles however remain the same.

After the advent of the computer and the information age, the paradigm changed. We now
look at ERP to automate the business processes, the computing paradigm replacing the
"human brain" paradigm.

Knowing the history and evolution of ERP is essential to understanding its current application
and its future developments. The following graph depicts the genesis of ERP by era:

Effectiveness

ERP Applications

r -Advent of Computers in)
Manufacturing

Pre computer Era l
Lo J

J

L 1960 1970 1980 1990 Time

87

www.manaraa.com

Kapil Apshankar

The following table looks at the advantages and focus of each of the eras through which ERP
has progressed.

Decade

1960s

1970s

1980s

1990s

2000s

Era

Pre-computer era

Advent of computers in
manufacturing

Advent of computers in
manufacturing

ERP Applications

Web Services

Focus

Inventory Control

Materials
Requirements
Planning (MRP)

MRP II- an
improved version of
MRP with some
closed loops.

Integrated software.
Just in Time and
Available To Promise
philosophies.

Synergy,
effectiveness, and
ease of integration

Disadvantages

Reorder Point
System

Open loops, no
feedbacks

Duplication

Duplication

None?

In the 1990s, the need to develop a system with tightly integrated programs that would use a
unified database and would be used across the enterprise gained prominence. This common
database, company-wide integrated system was named Enterprise Resource Planning (ERP).

ERP Implementation Methodology

88

Traditionally ERP is implemented as a product-based solution. The businesses assess their
requirements, come up with the product they want to employ to address the requirements, and
then go about customizing it. Although in reality this is a myriad of complex business decisions, it
could be simplified to an empirical waterfall model in the software development life cycle:

Assess ---. Select Product r---- Implement
Requirements or Module

www.manaraa.com

ERP and Web Services -The Third Wave

There are three commonly used ways of installing ERP.

1. The Big Bang: This is the most ambitious and difficult approach to ERP implementation.
In this methodology, companies cast off all their legacy systems at once and install a
single ERP system across the organization. Though this method dominated early ERP
implementations, few companies dare to attempt it anymore because it calls for the entire
company to mobilize and change at once. More often than not organizations have failed
miserably using this approach.

2. Franchising: This approach suits large or diverse companies that do not share
many common processes across business units. Independent ERP systems are
installed in each unit, while linking common processes, such as finance
management, across the enterprise. This has emerged as the most common way of
implementing ERP. In this methodology, we would witness legacy applications
being replaced one at a time, as requirements evolve.

3. Try and Buy: ERP dictates the process design in this method, where the focus is
on just a few key processes, such as those contained in an ERP system's financial
module. The try and buy approach is generally for smaller companies expecting
to grow into ERP. The goal here is to get ERP up and running quickly and to
avoid the re-engineering and tailoring issues in favor of the ERP system's out-of
the-box processes. The payback from this approach is not very high, but the
experience gained is invaluable. Most use it as an infrastructure to support more
meticulous installation efforts down the road.

Why ERP and Web Services?
A Web Service is any software component that makes itself available over the Internet or
intranet and uses a standardized XML messaging system. Beyond this basic definition, a Web
Service also has two additional and desirable properties. First, a Web Service has a public
interface, defined in a common XML grammar. Web Services also facilitate a relatively
simple and extremely powerful publishing mechanism through UDDI.

In the context of ERP, Web Services offer a two-fold advantage: ease of integration, and
reduction in costs through the hosted application model.

Ease of Integration

Ease of integration is a major source of expenditure across enterprises. To put the importance
of integration into perspective, it would be worth looking at benchmarking figures from the
Meta Group. Global 2000 companies rely on an average of 49 enterprise applications, and
they spend up to 33% of the IT budget just to get them to talk to one another.

ERP is complex and not intended for public consumption. It assumes that the only people
handling order information will be employees who are highly trained and comfortable with
the system.

89

www.manaraa.com

Kapil Apshankar

90

Now, however, clients and outsourcing vendors are demanding access to the same
information employees get through the ERP system - things like order status, inventory levels,
and invoice reconciliation- except they want to get all this information simply, without all the
ERP software. This is where Web Services come to the rescue, wherein seamless URL calls
make it possible to expose just the appropriate amount of material to the authenticated users
at the right time.

Integration is an age-old problem for IT. According to the IDC Digital Planet 2000 Report,
there has been a tremendous expenditure during the last 10 years: $18 trillion in IT
investment, and still there are integration problems. Indeed the more information that is
produced, the more complex the issues of integration become. It is not so much a case of high
volumes of data, but more a diversity of systems and architectures that don't communicate as
well as a company would like. The fundamental questions are what needs to be shared or
accessed, by whom, and how the end users or systems are geographically located.

Over time, different approaches have emerged - data adapters, message brokering and
other types of middleware, and other approaches. These different technologies have
collectively become known as Enterprise Application Integration (EAI). EAI is the process
whereby a company integrates their disparate legacy systems and databases, often with
recent systems additions.

With the availability of Web Services we can achieve integration with a superior quality of
service on parameters of reliability, security, manageability, routing, discovery, testing, and
effectiveness. Web Services basically use object-oriented technology to "wrap" data and
programming elements in Web Service methods to be accessed by different applications. The
client application need not be Web-based: a windows application can be a client and host the
Web Service functionality. The typical example is a price lookup request by a customer.
Using Web Services and Simple Object Access Protocol (SOAP), the browser can check out
prices at different SOAP-based sites and then deliver a price comparison to the customer. The
system provides the service behind the scenes by invoking different behavior and information
from the various target systems.

There is one basic difference between Web Services and EAI: Web Services provide an open
means of dealing with integration, where EAI has traditionally been driven by one or two
vendors or is product-specific. A software bridge of sorts may exist to connect a PeopleSoft
human resources package to SAP's R/3 system, but that same EAI bridge won't work for other
human-resources packages trying to connect to SAP. It is worth remembering that Web
Services is still primarily an interfacing architecture. Today's integration software companies,
however, offer integration solutions that easily enable a company to replace any application
through a hub and spoke system, and a standard adapter (for standard applications) or a tool
to create an adapter, without changing any code.

On the other hand, SOAP, for one, is a standard backed by the World Wide Web
Consortium. Also, where Web Services are meant from the get-go to be used in a distributed
fashion, that's not always the case with EAI technologies.

www.manaraa.com

ERP and Web Services -The Third Wave

Reduction in Costs Through the Hosted Application Model
The deployment of a traditional ERP system can involve considerable business process
analysis, employee retraining, and new work procedures. A franchising strategy to adopt Web
Services for ERP implementation or enhancement takes advantage of the investment made in
the legacy ERP applications and gives them a new lease of life.

Web Services permit proprietary applications to communicate over the Web. The goal of chief
vendors is to create "wrappers" to access a high-level tool that turns java or any other proprietary
program into a Web Service. Proprietary ERP applications and Web Services can talk to each
other by using such high-level tools - HP's E-Speak toolsets; IBM's Dynamic e-business
(infrastructure and software); and Sun's ONE (Forte technology and iPlanet's ECXpert)- all of
which assist data flow and communications between vastly diverse applications.

ERP provides for integrated, multicomponent application software performing multiple business
functions. It involves the use of packaged software instead of client-written custom software. It
must be noted here that some ERP packages are customizable by the client: for example SAP has
permissible client customization zones and naming conventions to identify client-developed
functionality, so that when a new version of SAP is released the customization is preserved. There
are of course areas that a client is not authorized to customize. Clients use SAP's language ABAP
for this purpose.

ERP vendors are finding ways for different enterprises involved in the same supply chain to
integrate their systems with the marketplace. This is actually a classic example of ERP using the
already established concept of e-commerce. Let's take an example here; say six people need to
communicate and they all speak different languages. One solution is to require each person to
learn the other five languages. A better solution would be for all six people to learn one common
language. RosettaNet aspires to solve this problem with PIPs (Partner Interface Processes).
Companies that need to collaborate work with RosettaNet to form the language for their
respective market. This mutually understandable dialog is documented in a PIP. This process
ensures that enterprises name APis for each other, decide on ways to fmd applications on the
network, and come to an agreement on how data is exchanged between applications.

How Do Web Services Make ERP Easier?
The enterprise may still require an ERP application for its internal systems to function
efficiently together. Web Services allow the enterprise to acquire the information needed to
respond effectively, even in situations where tightly coupled application design isn't necessary.

By developing an integrated Internet information solution, ERP systems companies make
public information that was never before accessible from the enterprise. Markets created in
this way are by definition more efficient, because they permit companies to concentrate their
efforts on customer service and profits. As this new technology gains business-wide support,
more vendors will venture into product support for these Web Services. It would not be out of
place to see an example here.

91

www.manaraa.com

Kapil Apshankar

Hewitt Associates {FBR Research Brief, "Web Services 101 -A Glimpse Into The Next
Software Computing Platform") is a consulting firm that provides outsourced human resources
capabilities. The company has already started providing online 40 1k, pension, and health
management services to over 250 organizations and their 12 million employees - a daunting
task for any IT department.

Traditional ERP vendors had a hard time building the links between the Web and their
software. Most of them are now presenting solutions helpful for bridging the gaps.

The number and functionality of available Web Services is starting to increase {for some idea
of the range of services now available, see http://www.4arrow.com/), and ERP and accounting
systems vendors are beginning to tackle the integration problem by introducing what are
called Web Service broker hubs. A broker hub offers a portal to provide a user interface for
consumers so that they can find, evaluate, subscribe to, cancel, manage, or monitor Web
Services. Users of a specific accounting or ERP application can visit their software vendor's
service broker hub to complement their accounting suite. The services brokered through these
hubs can integrate fully with the back-end applications so that data such as banking, shipment,
or credit information is not just delivered to a user's web browser but is sent to the local ERP
database so users can view it within the ERP application.

An increasing number of accounting and ERP vendors are delivering Web Service broker
hubs. SAP and Oracle offer them for users of mySAP and Oracle E-Business Suite. Intuit and
Peachtree offer them for use with QuickBooks and Peachtree Complete Accounting, and
N a vision is one of the few ERP vendors that will offer a Web Service broker hub to users of
midtier accounting software.

Web Service broker hubs offer a new way to customize an ERP application without any local
code modifications, because they integrate the application with Web Services. This saves
companies from relying on overstretched IT resources or expensive consultants for
deployment and maintenance of the software. The service provider takes care of delivering
the service, and its clients can subscribe for as long as they are interested in it, or use it on
demand. This is a terrific and powerful application of Web Services. This really simplifies
maintainability, efficiency of use, and productivity. Just imagine the improvements if the
mission-critical and problematic elements of a system can be a Web Service supplied by the
software house. It is very much akin to having the most technically sensitive parts of your
system housed by the experts under 24/7 monitoring.

I expect most ERP vendors to offer a Web Service broker hub within the next few years and
every ERP application to become a fusion that is neither a product nor a service, but both.

Current Scenario

92

Major enterprise application software vendors have already embraced the Web Services
architecture. Oracle, SAP, and PeopleSoft are on the forefront on this aspect, with many of
them already having graduated to the Web Services way of life. SAP and PeopleSoft are
pursuing Web Services to help facilitate application integration.

www.manaraa.com

ERP and Web Services- The Third Wave

SAP has fully embraced UDDI, becoming a global UDDI operator and aiming to build on
UDDI for service integration and publish global services within the UDDI Business Registry.
SAP plans to allow services built around its mySAP.com e-business platform to be published
on UDDI. In addition, SAP customers will be able to use UDDI to find and integrate external
services. SAP has already registered itself with UDDI and started to publish its global services
offerings. SAP's Web Services push will begin in earnest after it puts Java on a par with its
own ABAP programming language.

Key components of this new strategy will come with version upgrades to SAP's Web
Application Server, which will allow application components to be provided as Web Services.
By the end of 2002 there should be direct ties between SAP's proprietary realm and the world
ofJava programming in Version 6.3 of SAP's Application Server. Both virtual engines will run
in the same kernel environment. This coexistence will allow users to switch easily between
Java- and SAP-centric applications and Web Services.

PeopleSoft has just overhauled its offerings to a 100% Internet architecture giving it the edge
to transform the business around a new set of integrated applications and promising rapid
return on investment (ROI). PeopleSoft will add more Web Services support next year by
enhancing its toolkits so they understand how to interrogate SOAP and UDDI message
definitions.

Oracle, in the first quarter of 2002, has already made use of Web Services technologies to
better integrate business logic across the applications that make up Oracle 11 i.

Where Oracle, SAP, and PeopleSoft see Web Services as a foundation for better integrating
applications within their own suites, others see Web Services as an industry-standard
infrastructure that will facilitate business-logic integration across diverse best-of-breed
applications on a global scale.

Another aspect that cannot be overlooked is that since Visual Studio .NET has been released,
we should see a significant increase in the development and integration of Web Services.
Visual Studio .NET makes it so easy to do, and so cheap: it's only a question of time now.

The following table summarizes the Service Oriented Architecture offerings that the major
vendors have, with which all of them aspire to capture a piece of the pie.

Competitor Environment Expected
Date

SAP J2EE and ABAP in the 2002
same kernel

Oracle Java 2002

Status

Nearly
Done

EOY

Offerings

R3,
mySAP.com

lli Suite,
Java APis

Table continued on following page

93

www.manaraa.com

Kapil Apshankar

Competitor Environment Expected Status Offerings
Date

PeopleSoft Tools for SOAP and 2002 Nearly PeopleSoft8
UDDI Done

Microsoft .NET and Passport 2001 Done Bcentral

Siebel Business Services 2001 Done Siebel7

Technology Issues
The high-level architecture of a Web Service-enabled ERP solution could primarily take two forms:

0 Information integration/exchange

o Functionality Enhancement or Substitution through the hosted-application model

We will cover both these architectures in detail here.

Web Services-ERP based model: Architecture for
Information Integration/Exchange

This architecture can be employed in two business scenarios:

94

o When information native to an internal ERP system has to be made public or shared
with other business partners.

0 When a small company goes in for a Try and Buy approach for an ERP
implementation.

1

ERP System

ERP
Interface

Repository

2 UDDI Business
Registry

5

Non-ERP System

www.manaraa.com

ERP and Web Services -The Third Wave

The following are the transactions that happen in this architecture:

1. XML interfaces are published in the Interface Repository.

2. Interfaces are now registered as Service Types with the UDDI business registry.

3. Users register their Business with references to Service Types.

4. Another user discovers a suitable business.

5. The user downloads Service Type Descriptions.

6. Electronic business conducted

To reduce the difficulty of connecting their systems with other vendors' applications,
customers have pushed their primary ERP providers to adopt a more open and flexible
architecture and to support standards-based computing. Most big ERP providers have
responded by migrating their architectures to component frameworks based on such standards
as COM, DCOM, and CORBA. In the vast majority of cases, however, it's still quite difficult,
expensive, and time-consuming to integrate enterprise software. The technology to make this
easier is on its way. Not only Web Services, but also .NET's remoting will help to this end.

Still, when it comes to opening architectures, vendors think twice. On the one hand, they
need to respond to customer demands for easier integration. By supporting integration with
other vendors' software, they can add diverse functionality to customers' ERP systems without
having to develop every new application that comes along. For example, SAP does not have
adapters or connectivity to PeopleSoft or Baan. This is where an Integration vendor comes
into play and offers such functionality through a Web Service. On the other hand, it's easier
for vendors to provide efficient and reliable software when they control all the pieces. ERP
vendors also earn higher profits when they sell more modules to individual customers. While
the trend is definitely toward increasing openness, it won't happen overnight. Vendors can't
abruptly migrate to a new architecture because doing so would disenfranchise customers with
legacy systems.

Before making a decision on ERP packages, we must make a list of software with which we
need to integrate and the specific functions, business process, and data that need to be
married. Although by using XML the need to integrate disparity or remove incompatibility
barriers are minimized or negated, we need to adopt a pragmatic approach here and carefully
determine how much work is involved to integrate the packages. It would also help if we have
a clear understanding of the vendor's timetable for supporting the integration of any functions
that are problematic right at the outset.

95

www.manaraa.com

Kapil Apshankar

Web Services-ERP based model: Architecture for the
Hosted Application Model

This architecture is suitable for organizations that already have an ERP infrastructure in place
and merely want to augment it by franchising outsourced functionalities.

Such an application would follow the same development life cycle as discussed for the earlier
architecture.

Web Hosted
Architecture
ERP System

1

Repository

2 UDDI Business
Registry

5

Existing ERP System

There has been a perception for years that ERP is not meant for the midmarket because of its
reputation of having long and expensive implementations. Applications based on this architecture
that are hosted and largely not customized, however, have helped ERP shed its reputation.

Comparison

96

This is a comparison between the current day ERP solutions and the Web Service-based ERP
solutions:

Parameter

Scalability

Time Frame for implementation

Maintainability

Traditional Solution

Low

Very High

Low

Web Service Solution

Very High

Moderate

Very High

www.manaraa.com

ERP and Web Services- The Third Wave

Parameter Traditional Solution Web Service Solution

Reliability Moderate High

Portability Low Very High

Cost to Enter High Moderate

Cost to Maintain High Low

Total Cost of Ownership High Low

ROI Moderate Very High

Beneficiaries of ERP Web Services
Two entities immediately spring to mind as being direct and immediate beneficiaries of ERP
solutions using a Web Services methodology:

D Medium-sized companies.

D Small companies.

These entities are usually grouped into the SME category, but we would consider them
separately to see how they benefit from this model. For medium-sized organizations, the Web
Services methodology is the cheapest and easiest way to implement an ERP solution. It offers
substantial cost savings as we shall see in the subsequent section. One of the major advantages
for these organizations is that an ERP system can be literally built off the shelf.

Small companies benefit similarly, using their limited resources to outsource ERP solutions
and curb expenditure.

SAP reports that more than 43% of SAP installations are at companies with less than $200
million in annual revenue, and more than 60% take place at companies that have less than
$500 million in annual revenue. Small and medium businesses don't have different needs
from larger companies, but they generally can't afford customized solutions.

One third of PeopleSoft's new customers are from the SME category. At the present,
PeopleSoft has more than 1,000 customers in the midmarket. One-third of Oracle's sales in
North America are to companies with less than $500 million in annual revenue. Worldwide,
small and midsize companies are 25% to 30% of Oracle's sales.

As with PeopleSoft, Oracle has also come to rely on the hosted-application model to drive
down costs and produce rapid implementations for its midsize customers. Much of this is done
through the company's FastForward program, which offers customers a subset of Oracle's
software suites. In Oracle's fiscal year 2001, which ended in May, 85% of Oracle application
implementations via its hosted model were completed in less than 150 days. Such a fast
delivery methodology promises rapid breakeven in an ERP implementation.

97

www.manaraa.com

Kapil Apshankar

Economics of ERP Web Services
Web Services are not free, they cost time and money to develop - even those that are being
offered for free currently. They are, though, cheaper than their "bricks and mortar"
counterparts. Legacy data or information has to be "wrapped" to become a Web Service,
which can require a fair bit of custom programming work. This is an item to be considered
under the cash-out flow column. Apart from this, however, there are substantial savings in
other aspects of ERP Web Services.

In a recent Meta Group study encompassing the total cost of ownership (TCO) of ERP, including
hardware, software, professional services, and internal staff costs, among the 63 companies
surveyed - including small, medium, and large companies in a range of industries - the average
TCO was $15 million (the highest was $300 million and lowest was $400,000). The TCO numbers
include getting the software installed and the two years afterward, which is when the real costs of
maintaining, upgrading, and optimizing the system for business are felt. While it's hard to draw a
solid number from that kind of range of companies and ERP efforts, Meta came up with one
statistic that proves that ERP is expensive no matter what kind of company is using it. The TCO
for a "heads-down" user over that period was a staggering $53,320.

The TCO for a similar Web Service solution would be substantially lower. This is due to the
fact that the following costs normally incurred in a traditional ERP solution are alleviated or
reduced in this approach:

o Deployment costs.

D Consultancy costs.

0 Future expenses due to migration and scalability issues.

D Training costs.

0 Integration and testing costs. We benefit from the "componentware" paradigm Web
Services offer.

o Data Conversion costs.

0 Data Analysis costs.

The rapid turn around time of a Web Service solution promises higher yield and ROI, lesser
investment, and faster break-even point.

Interrelation

98

During the last three years, the functional perimeter of ERP systems has expanded into its
adjacent markets, such as supply chain management (SCM), customer relationship
management (CRM), product data management (PDM), manufacturing executions systems
(MES), business intelligence/data warehousing, and e-business. The major ERP vendors have
been proactively developing, acquiring, or bundling new functionality so that their packages
go beyond the traditional realms of finance, materials planning, and human resources.

We should soon begin to witness symbiotic Web Service offerings from all the major vendors.

www.manaraa.com

ERP and Web Services- The Third Wave

The Road Ahead
To judge from a recent Accenture survey of executives in mid-sized and large companies,
ERP still looms large on the radar screens of business decision makers. The Accenture study
shows that 22% of the executives surveyed believed ERP implementation to be the most
beneficial technology investment over the last two years for their organizations.

A growing number of small and midsize companies are deploying enterprise resource
planning applications. In the past, many of these companies, typically with an annual revenue
of less than $500 million, didn't have the budget or time to consider implementing large,
complex, and expensive ERP packages. With the increasingly vast array of software vendors
such as Oracle, PeopleSoft, and SAP to choose from, a lot of smaller companies are rethinking
their options, which now include less expensive, modular, W eb-architected, and hosted
versions of ERP software.

Within the next two years, ERP will be redefined as a platform enabled by Web Services
globally. Originally focused on automating the internal processes of an enterprise, ERP
systems will begin to include customer and supplier-centric processes as well. ERP Web
Services will become universal business applications that will encompass front office, business
intelligence, e-commerce, and supply chain management.

Conclusion
ERP is a great concept, but like so many of these great ideas, conditions apply. It seems very
likely that future ERP applications will not be either products or services, but rather
combinations of products, services, and "loosely coupled" applications. These applications are
another form of hybrid because they combine locally installed product functions with
distributed service functions delivered electronically over the Internet.

Hybrid models offer a best-of-both-worlds solution. They provide fast, locally installed product
functions combined with on-demand remote services that take advantage of the Internet. They
help maintain private data ownership, while making select data public in a controlled manner.
They deliver simple customization of applications through the addition of Web Services
channeled via service broker hubs, which focus on the needs of a specific ERP suite.

99

www.manaraa.com

Authors: Liang-Jie Zhang and Henry Chang

• Process Integration

• E-Logistics Processes Integration Framework

• Example

• Wor.king 828 System

www.manaraa.com

E-Logistics Processes Integration
Using Web Services

With globalization and the resulting need for faster and more flexible communications, a
company needs a framework to establish itself in no time or make best use of its legacy
applications and run efficiently at minimal cost. This case study presents such a framework
called ELPIF (E-Logistics Processes Integration Framework) fore-logistics processes integration
based on Web Services via incorporating a:

1. Common alliance interface.

2. Adaptation layer.

3. Dynamic data binding mechanism.

This framework can be adopted as a new service delivery model that uses a design pattern,
business process inheritance, and solution templates. The interaction between the e-logistics
processes and the business process manager that orchestrates e-logistics processes in an e
business solution will be described in this paper. An example of transportation planning in the
purchase order management process of a B2B solution is used to illustrate the usage of ELPIF by
encapsulating United Parcel Service of America (UPS) Online XML Tools as Web Services.

In the last couple of years, various online shipping tools have been developed for e-commerce
application developers. Take the example of the transportation industry: United Parcel Service of
America (UPS) provides several online XML tools and HTML tools (UPS OnLine E-Commerce
Tools, http://www.ec.ups.com~, and Federal Express (FedEx) provides in-house web tools (FedEx
API, http://www.fedex.com~ for developers in order to facilitate the development of online shipping
tools. We have not, however, seen a common service interface to allow users to easily hook up with
existing tools.

www.manaraa.com

Liang-Jie Zhang and Henry Chang

The developers of client applications usually are forced to construct by hand multiple requests for
different backend servers requiring a great deal of time and effort, although integration software
vendors have been addressing this issue for years. Different shipping carriers might require
distinctive implementations and could have proprietary platforms and their own constraints.

In order to expedite the shipping process and minimize costs, the shipping solutions provided
by a value-added service provider specializing in the transportation industry must empower
the customers and suppliers with the ability to rate, ship, and track shipments. Many solutions
in today's competitive market have been able to achieve the above goals but they still have
some deficiencies:

0 Most of them are platform-dependent and unique to a specific shipping carrier. Since
the shipping solutions are not generic, they could not be considered as a candidate
for standards that can be followed by the rest of the players in the industry.

0 Because most Windows-based applications are standalone applications, users have no
choice but to purchase or evaluate them before actually using them (for examples of
shipping automation, see, http://www.kewill.com/). Moreover, Web-based solutions
are distributed over the Internet, implemented as servlets or CGis. The interfaces for
integration are not suitable for advertising or data exchange.

With the development of Web Services, it becomes technically feasible to define a uniform
interface for the solution developers, which leads to potential business opportunities for
technology vendors, service providers, and solution software providers (see
http://www.ibm.com/services/uddi/). The framework, ELPIF, presented in this paper proposes
a common generic interface for all the Shipping Service Providers, allowing all providers to
build their Web Services on this interface and then deploy those services in the Universal
Description, Discovery, and Integration (UDDI) Registries for other companies to find and
use. Note that the common generic interface should cover all the possible services provided
by the shipping industry. Only some of them will be implemented or provided by a shipping
carrier. Though we are focused on the shipping industry, the principles embodied in ELPIF
can be applied to other domains.

Blending the Web Services and the dynamic XML data binding approach will lead to what
could be considered a generic shipping service. This is critical since it allows a shipping
service client to design and deploy code to use the generic shipping model, and then at run
time use the dynamic data binding mechanism to invoke a specific implementation of a
shipping service. Because Web Services can be implemented in any programming language,
developers are not obliged to change their development environments in order to generate or
use Web Services. If the shipping service carriers have their own special services that
differentiate themselves from others, we also recommend them to publish their service
interfaces to the UDDI Registry or use Web Services Inspection Language (WSIL) documents
so that their e-logistics expertise can be made available to e-commerce sites and e
marketplaces as cost-effective services. At this point, the common interface for the shipping
industry could be extended to encapsulate these new services. Consequently, any client
application can benefit from the characteristic of architectural independence that is embraced
in our framework and other people's work on Web Services-based application integration.

102

www.manaraa.com

E-Logistics Processes Integration Using Web Services

For most integration architecture, XML plays a role of trivializing the exchange of business
data among companies by providing a cross-platform approach in the areas of data encoding
and data formatting. For example, Simple Object Access Protocol (SOAP), built on XML,
defines a simple way to package information for exchange across system boundaries. UDDI
Registries, on the other hand, allow programmable elements to be located in a central
repository or in web sites, which others can access remotely. By adopting the above
technologies, not only do we get interoperability for our customers but also we can use our
multi-platform approach to provide better offerings and solutions with the help of which any
industry can accomplish their transactions efficiently and profitably.

ELPIF serves as a Web Services model such that any user could easily access the services it
provides through a standard SOAP protocol. ELPIF helps shipping businesses act more
quickly and more efficiently, and it also provides a methodology for automating process
integration resulting in reduced integration time and cost, increased efficiency of service
delivery, and competitive advantage in the marketplace.

This paper is organized as follows: Section 1 discusses e-logistics processes integration after
reviewing e-logistics processes, and also presents our proposed integration framework, ELPIF,
by introducing the common alliance interface, adaptation layer, and dynamic data binding
mechanism. Section 2 gives an integration example using UPS On-Line XML Tools in a
purchase order management process. Section 3 shows a working B2B system using e-logistics
Web Services.

E-Logistics Processes Integration
When it comes to logistics, the challenge has always been how to deliver products to
customers as quickly and safely as possible. Logistics is concerned with the flow of materials
in the supply chain, from source through the industrial process to the customer, and then on
to reuse, recycle, or disposal. By coordinating all resources, logistics have to ensure that
service-level agreements with customers are honored. Efficient logistics can result in cost
savings, which can be passed on to the customer, often resulting in increased business.

E-logistics is defined as the mechanism of automating the logistics processes and providing an
integrated, end-to-end fulfillment and supply chain management service to the users of
logistics processes. Those logistics processes that are automated by e-logistics provide supply
chain visibility and can be part of existing e-commerce or workflow systems in an enterprise.

The typical e-logistics processes include Request For Quotes (RFQ), Shipping, and
Tracking. As shown in the following diagram, e-logistics interacts with the business process
manager in an e-commerce server such as a B2B (business to business) or B2C (business to
consumer) server.

103

www.manaraa.com

Liang-Jie Zhang and Henry Chang

-UPS Server
-FedEx Server
-Airborne Server

Update PO

The business process manager invokes the RFQ process for the basic services such as getting
the quotes in an e-logistics process. Whenever the response is obtained, the purchase order
(PO) will be updated. The shipping process is also invoked by the business process manager
and will update the corresponding PO upon completion. Along with the shipment of goods, a
tracking number will be given to the customer and that tracking number will be bound to the
PO number in the processing e-commerce system. Customers can track their shipment with
the help of that number. The interaction diagram of e-logistics and business process manager
shown above represents the high-level view of ELPIF. It is worth noting at this stage that
although FedEx and Airborne are both webMethods customers, the ELPIF presented in this
paper is a framework, not a real service. Thus, value-added service providers who adopt
ELPIF could work with FedEx, Airborne, or other shipping service providers.

ELPIF Components and Services
As mentioned earlier, there are three main components to ELPIF, and we shall discuss each in
turn. After looking at the general architecture of the framework, we shall examine the Web
Services it provides.

Common Alliance Interface
Common Alliance Interface is a higher-level service interface that encapsulates the clients
from multiple transportation carriers and provides an abstraction layer for available services.
Such an interface would contain the method signatures of the functions that need to be
implemented by the Web Services published by different Shipping Service Providers such as
UPS, FedEx, and Airborne. The published Web Services communicate directly with their
legacy applications using the adaptation layer and dynamic data binding mechanisms
introduced in this article. These methods require XML as an input and their result is also
XML. As a multi-carrier connector, the Common Alliance Interface makes the overall
shipping processes simpler than current practices because:

104

www.manaraa.com

E-Logistics Processes Integration Using Web Services

o A set of common interfaces is available to all the shipping carriers, and would ease
the work of conducting service requests. All a service requestor has to do is issue a
single service request using standardized interfaces, as opposed to composing and
sending different complex requests to multiple targeted service providers.

o It would also ease the development task of the client application. Developers only
need to develop one single piece of code for all the Shipping Service Providers.

o From a shipping carrier's perspective, a set of standard interfaces provided by the
Common Alliance Interface of ELPIF can be used as a means to increase the customers'
awareness of their quality of services and products in terms of reliability and efficiency.

o It would reduce the development effort by reusing the Common Alliance Interface and
allowing easier adaptation to new service requirements or technologies. This last point
is key, because without adoption of the service it will flounder and not be successful.

The Common Alliance Interface is implemented by all the shipping carriers, and the resulting
Web Services are published in the UDDI Registry so that trading partners and customers can
search and retrieve those services.

Adaptation Layer
The adaptation layer is a key connector between the Web Services and corresponding legacy
applications in an industry. The adaptation layer works as a service dispatching broker and
service aggregation broker. It is responsible for manipulating the requests from the user and
the responses from the server. When a user invokes a Web Service, the request is sent to the
adaptation layer which then performs the method signature mapping between application
client and Web Services methods, conducts protocol transformation (from SOAP to HTTPS,
say), and dispatches the request to an appropriate shipping carrier server (legacy application).
Responses from the server are also aggregated by this layer and will be sent back to the
requestor. The adaptation layer plays an important role in aggregating responses from several
shipping carriers to the service requestor.

Dynamic Data Binding
The adaptation layer binds the "dynamic data" (the live and updated data) from the Shipping
Service Provider's server to the response XML. For instance, the quote for a service is not
hard-coded in the implementation of a Web Service. The quote information will be connected
to the transporters' backend servers when this method in the Web Service is invoked. The
adaptation layer is used to create a connection template while the dynamic data binding
mechanism integrates real-time data into the defined connection template.

ELPIF Architecture
The ELPIF backend architecture in the following diagram shows the interaction between different
layers. The Web Services of different Shipping Service Providers provide implementations of the
methods that are defined in the Common Alliance Interface. The user finds the appropriate service
with the assistance of the UDDI Registry and sends its XML-based service request to invoke a
service. The request is then sent to the appropriate Shipping Service Provider (SSP) server and the
response (XML) is sent back to the requestor by the adaptation layer and Web Services Layer.

105

www.manaraa.com

Liang-Jie Zhang and Henry Chang

Legacy Adaption
Applications Layer

SSPN
ADAPT ION

LAYER

WS: Web Services
SSP: Shipping Service Provider

Web Services Layer

SSP1 UDDI
WS Reg

Common Alliance Interface

For example, for a RFQ Web Service, the Common Alliance Interface could contain a
method such as:

public String getServicesQuotes(String xmlinput)

This method could be implemented in the Web Services of the various Shipping Service
Providers. It would then be called by the Service Requestor to obtain quotes from different
providers. This method takes XML as an input and returns XML as an output. An example of
such Request and Response XML is given later in the paper.

ELPIF serves as a service model using the design pattern in which all Web Services are built
on the Common Alliance Interface and the requestor invokes the desired Web Service after
finding an appropriate one. The whole complexity of the interactions among the Web
Services, Adaptation Layer, and the legacy applications are transparent to the application
developer or the requestor of the service.

ELPIF provides three Web Services to each Shipping Service Provider in order to connect
their existing applications to a shipping e-marketplace that is empowered by UDDI registries
and Web Services:

106

o RFQ Web Services.

0 Shipping Web Services.

0 Tracking Web Services.

www.manaraa.com

E-Logistics Processes Integration Using Web Services

They are briefly described as follows.

RFQ Web Services

Any B2B application can send a request to the RFQ Web Services. The RFQ Web Services
then dynamically bind the data entered by the requestor (such as shipping destination and
weight) to the input XML template, and send the request to the adaptation layer. The
adaptation layer dispatches the request to the appropriate server and gets the response from
the backend server. It then binds the live data received from the server with the response
XML template and sends it back to the B2B application. The authentication of the user will be
verified at each step by examining the user ID and password associated with the application.
For example, this RFQprocess is actually used by the service requestor, such as a shipping
agent, to compare the different available services so they can select the most favorable one. As
an end user, you can use your user ID and password to sign into a value-added-service
providing portal, which uses an intelligent shipping agent that is authorized to invoke all the
RFQ Web Services. Before they use the intelligent shipping agent, the user has to be
authenticated by a policy-based authentication system such as Tivoli Policy Director.

Shipping Web Services

After the user selects the transportation service provider, the next process is sending a
shipping request to the Shipping Web Services. The Shipping Web Services provided by the
service provider then dynamically bind the data entered by the service requestor (such as
shipping destination and weight) to the input XML template and send the request to the
adaptation layer. The adaptation layer then sends the request to the shipping server and gets
the response from the server. It then binds the live data received from the shipping server
with the response XML template and sends it back to the B2B application.

The customer will be given a tracking number embedded in the response. Once the goods are
shipped, the tracking number is mapped to the purchase order ID in a B2B application.
Similarly, the service requestor application is authenticated by verifying the provided user ID
and password.

Tracking Web Services

The supplier, buyer, or any party in the supply chain may want to check on the status of the
shipment corresponding to a specific purchase order. After the commerce server gets the shipping
status from the Tracking Web Services, it will update the manifest information in the purchase
order database. The Tracking Web Services talk to the backend server to retrieve the detailed
shipping status through the adaptation layer and hence can track the status of the shipment.

E-Logistics Example: UPS Integration
In this section, an e-logistics example is given for encapsulating UPS Online XML Tools into
Web Services.

The portion to the left of the dotted line in the following diagram represents the creation and
details checking of a purchase order:

107

www.manaraa.com

Liang-Jie Zhang and Henry Chang

PO
Creation
Request

SOAP

-Create PO and store it
-Process this PO
-Generate the invoice
-Send it back to buyer

PO Store
(PO Info)

PO Processing Transportation
Dispatch Planning

Transportation
Broker

ABC Server

n
~

UPS Server

Once we have created the purchase order, it will be processed further by the downstream
components. One issue that needs to be looked into is the transportation planning. This is a
vital issue as it is concerned with many factors such as lowest shipping cost, easy availability,
and so on. The transportation broker is an intelligent agent that dynamically creates a
response list from the available service providers such as UPS and FedEx who meet the
criteria of the requestor most efficiently. All shipping carriers should have their own Web
Services published in the UDDI registry so that they can be easily found from a central place.
The selection request made by the customer is sent to the transportation broker that finds the
appropriate service from the UDDI Registry and the result is bound to the requestor. The
transportation Web Services may include ABC Transportation Web Services, UPS Web
Services, and so on.

The following diagram depicts the integration architecture of a shipping carrier. UPS is taken
as an example of a shipping carrier. UPS Web Services like RFQ, Shipping, and Tracking are
explained in this paper, although there can be many more services such as warehouse
management Web Service, transportation management Web Service and so on. These Web
Services interact with the UPS XML Online tools:

108

www.manaraa.com

E-Logistics Processes Integration Using Web Services

I Purchase
Order

Management

1~ B2B
Appli~

• SOAP SOAP

Internet

ML

XML

UPS
Adaption

Layer

XML Request 1

~--X-M_L_R-es_p_o-ns_e_l __ ~

D1spatchmg ~
and

Aggregation
Broker

XML Request 2

XML Response 2

XML Request N

XML Response N

Response '---------'

...
Q)
c
!

r
c s.
Q)

" !!! UPS Legacy ...
.5 XML Applications

Online
Tools

Server

When a Web Service, such as the RFQ Web Service for UPS, is invoked by a SOAP call, it
binds data, such as country of dispatch, source, and weight, to the XML Request template.
The XML Request is then sent to the Adaptation Layer, which works as a service dispatching
broker and service aggregation broker. Once it receives an XML Request, which might be the
aggregation of multiple requests such as lookup for Next Day Air Service and Standard
Service by UPS, it sends these requests to the UPS Server. The adaptation layer will aggregate
the responses received. After mapping the live data received to the response XML template,
the adaptation layer will send the response back to the requestor.

The Request XML template can have the following structure:

<?xrnl version="l.O">
<AccessLicenseNum>123 </AccessLicenseNum>
<Userid>upsuser< / Userid>
<Password>2ppp4</ Password>
<Shipment>

<SourceAdd>
<Ci ty>Ch a rlo tte</City>
<State>NC</State>
<Posta1Code>28213< / Posta1Code>
<CountryCode>US</CountryCode>

</SourceAdd>
<DestinationAdd>

<City>Whi te Plains < /City>
<State >NY</State>
<Pos ta1Code>10603</ Posta1Code>

109

www.manaraa.com

Liang-Jie Zhang and Henry Chang

<CountryCode>US</CountryCode>
</DestinationAdd>
<ServiceCode>ll</ServiceCode>
<ServiceCode>14</ServiceCode>
<PackageWeight>lOO</PackageWeight>
<UnitOfMeasurement>lbs</UnitOfMeasurement>

</Shipment>

This request is dispatched to the appropriate UPS server by the adaptation layer, which then
sends the received response to the requestor. If the request is an aggregation of multiple
services such as Quote for Next Day Air and Ground Service, the response from the server is
aggregated by the adaptation layer and is sent back to the requestor of the service. The service
code number is mapped to the Service Name.

The Response XML template can have the following structure:

<?xml version="l.O">
<Response>

<PackageWeight>lOO</PackageWeight>
<UnitOfMeasurement>lbs</UnitOfMeasurement>
<RatedShipment>

<ServiceCode>ll</ServiceCode>
<Charges>

<CurrencyCode>USD</CurrencyCode>
<MonetaryValue>300</MonetaryValue>

</Charges>
<DaysToDeliever>l</DaysToDeliever>
<DelieveryTime>lO:OOAM</DelieveryTime>

</RatedShipment>
<RatedShipment>

<ServiceCode>14</ServiceCode>
<Charges>

<CurrencyCode>USD</CurrencyCode>
<MonetaryValue>250</MonetaryValue>

</Charges>
<DaysToDeliever>2</DaysToDeliever>
<DelieveryTime>ll:OOAM</DelieveryTime>

/RatedShipment>
</Response>

The following screenshot shows the deployed service information about UPS RFQ Web
Service. The ID of this Web Service is urn:ups_gcb-service, which is aJava application
with 13 methods. You can invoke some of them or all of them depending on your
requirement and business context:

110

www.manaraa.com

E-Logistics Processes Integration Using Web Services

'i http:/ / wsbJ4/ upssoap/ admm/ showdetads.Jsp>•d =urn:ups _gcb-setvJce - MicrOSoft

File Edit View Favori:es Tools Help

Deployed Service Information

'urn:ups_gcb-service' Service Deployment Descriptor

,----;;
Property Details

ID um:ups__gcb-service

Scope J\pplication

ProVIder Type Java

Provider Class comibm.gcb. ups. UPS_ GCB

Use Static Class false
.------
secondDayAir. nextDayAirS. nextDayAir, thirdDaySelect, Standard, Ground,

Methods worldW1deExpress, worldWideExpedited, worldWideExpressPlus, nextDayAirSaver,
getQuotes, nextDayAirEarlyJ\M, secondDayAir J\M

Type Mappings

Default Mapping
Reg1stry Class

A Working 828 System Using ELPIF
The B2B system is shown on the left side of the following diagram. The detailed description
can be found in Bhaskaran et al (see Reference). The Interaction Manager (IM) that houses the
solution components is responsible for driving the client interaction. This is a model-view
controller framework consisting of a set ofjavaBeans,JSP (JavaServer Pages) templates, and
Servlets. The Trust and Access Manager (TAM) houses the Organization Model that forms the
basis for client authorization, which is the process of determining whether an authenticated
client has the right to perform an operation on a specific resource in a secure domain. The
Business Flow Manager (BFM) externalizes the flow definitions (control flows and data flows)
and the business rules that drive the process choreography:

111

www.manaraa.com

Liang-Jie Zhang and Henry Chang

l tnteractlon 1

Trust & Access
Manager

(TAM)

I Manager t-----1
L (IM)

Internet

UPS Online XML

Web Services
Server

(SOAP, U DDI registry)

In addition to the aforementioned B2B platform, there is a Web Services Server including a
SOAP server and a private UDDI registry. As an example, UPS Web Services are deployed
and registered on it.

Requests from the Web browser will be sent to the TAM first to finish the single sign-on
process. Single sign-on is a mechanism whereby a single action of user authentication and
authorization can permit a user to access all computers and systems where they have access
permission, without the need to enter multiple passwords. Single sign-on reduces human
error, a major component of systems failure, and is therefore highly desirable but difficult to
implement. For more details on single sign-on, see http://www.opengroup.org/security/sso/.
The subsequent pages in the application will automatically attach the user credential
information to BFM that will invoke a command to search the UDDI server or invoke a Web
Service based on the business context.

The following scenario describes a prototype of Web Services integration with the above B2B
system. Stage one represents a business process implemented by the B2B system as a Web
Service; stage two is an example of using Web Services as building blocks for business process
solution based on ELPIF.

Stage One: Submitting a Purchase Order

112

1. John, the purchasing agent of Fabulous Furniture Outlet (an example buyer for
the B2B system), opens the procurement system client.

2. John submits a purchase order for 78 hardwood chairs. Using Web Services, it is
submitted to the BFM for processing.

www.manaraa.com

E-Logistics Processes Integration Using Web Services

Stage Two: Processing a Purchase Order

1. Mary, the sales manager for BookCase Corporation, (an example supplier for the
B2B system) logs on to check new purchase orders.

2. Mary discoversJohn's purchase order as she proceeds to process the order. As
part of order processing Mary must authorize a transporter to ship bookcases
from their manufacturing center in USA.

The following screenshot illustrates the screen of the details of a specific PO. This information
is derived from the purchase order database:

KEPEX PO Details-> 50-260.1010162303218

[Supplier Article Description [Hardwooden Chair

[Kepex Article Num 4

Supplierld [999
Customer N arne [sears

Qty f78.0

[Dispatch Countly [UsA

ifort of Loading JjNew York

~TD 12002-02-10

Transport Service Provider

Get List of Transporter I(E-Hub Memebers Only)

The Dispatch Country is USA and the port of loading is New York. Based on this information,
the transportation broker will search the UDDI registry to get a transporter list of service
providers in the United States. Each service provider may provide multiple services. For each
service, Mary can invoke the Web Services to get the quotes.

The following screenshot illustrates the response from three service providers: ABC
Transportation Inc, Sunshine Transportation Inc, and UPS. These Web Services are built on
the ELPIF. The UPS Web Services, for example, are directly connected to a live UPS XML
Tools Server through the adaptation layer of ELPIF. In our application, seven methods have
been invoked to get their quotes:

113

www.manaraa.com

Liang-Jie Zhang and Henry Chang

Supplier Portal-> Transporter Quotes List for PO

PO ID : 50-260.1010162303218

Transporter Service Name Se!VICe Invoked Quote (USD) Select

ABC
Transportallon ABC_Transport_Se!VIce
Inc

gctTransportallonQuote 245 38 I r

Sunslune
Transportation Sunslwle_Transport_SC'!VIce gctTransportallonQuote 219.87
Inc.

Next Day JUr. FROM
Hawthorne, NY 10532 TO

UPS San Francisco, CA 94102 nextDaylUr
(Your Packaging, 120
pounds)

UPS Second Day JUr secondDayAir
UPS n;;;-d Day-S-el-ec-t -·- thlrdDaySelect

UPS UPS Ground Ground

UPS Next Day AJI Saver nextDayAJISaver

rUPs Next Day .AJI Early AM nextDayAJIEarlyAM

UPS 'Second Day AJI AM secondDay.AJIAM

206.03

144.27

58.17

275.3

335.75

23112

r.
r
r
r
r
r

__ ,

'

~-

-

After Mary reviews the quotes, she can select one as a transportation service provider for this
specific purchase order. Then the purchase order information will be updated. The updated
purchase order information is shown in the following screenshot. At the same time, the
notification will be sent to the buyer, supplier, and shipping company. The PO ID has been
mapped to the real tracking ID generated by shipping carrier so that it can be used for tracking:

114

KEPEX Supplier Portal PO: Selected Transporter Review

PO ID: 50-260.1010162303218

!Hardwooden ChaJ!'
--~~ ----~------~

Hardwooden Chair
~ --------------1

999
597
78.0

USA
Ne;Y'ork

12002-02-10

Transport Service Provider UPS

The PO is finalized. The notification will be sent to the
buyer, shipping company and supplier.

-

www.manaraa.com

E-Logistics Processes Integration Using Web Services

From this working B2B solutions development, we have learned that Web Services are
emerging e-business applications that can connect and interact with one another on the Web
more easily and efficiently, eliminating much of the time-consuming custom coding currently
required in B2B environments. At the same time, they enable development of powerful
business services supporting dynamic, collaborative B2B activities and facilitate dynamic
business process brokering and intelligent agents with open, real-time business services based
on ELPIF.

Conclusions
An e-logistics framework ELPIF is presented in this paper. ELPIF can be adopted by shipping
carriers or marketplaces. Based on ELPIF, a shipping service can be designed in a standard
way. Shipping service providers can make optimum use of their legacy applications and run
efficiently with minimal cost input.

We have introduced and explained the concept of Common Alliance Interface, Adaptation
Layer, and Dynamic Data Binding mechanisms. The Common Alliance Interface serves as an
isolation layer separating the service requestors and service providers and hence reduces
complexity by minimizing the number of interfaces to requesting applications. The
Adaptation Layer, which is the mediator between the alliance layer and the service providers,
manipulates the request and response accordingly.

ELPIF exploits Web Services as the building blocks that distinguish ELPIF from other existing
integration solutions, most of which are either standalone applications or hard-wired with
existing platforms. Hence, we argue that ELPIF contributes to the area of business process
integration by providing a new service delivery model using a design pattern and solution
templates, for the shipping industry in particular and whole industry that demands business
integration in general.

Reference

Kumar Bhaskaran,Jen-Yao Chung, Terry Heath, Santhosh Kumaran, Raja Das, and Prabir
Nandi, An e-business Integration & Collaboration Platform for B2B e-Commerce, Advanced
Issues ofE-Commerce and Web-Based Information Systems, IEEE WECWIS, 2001, pp120-122.

115

www.manaraa.com

Author: Bilal Siddiqui

• Requirements of E-Commerce models

• Starting an Electronic Marketplace

• Architecture using UDDI and WSDL

• Reducing Costs

ammon Business Protocols

www.manaraa.com

UDDI·based Electronic
Marketplaces

Electronic Marketplaces (eMarketplaces) are supposed to bring together businesses on the
Web. Buyers and sellers should be able to interact with each other inside an architecture that
is easy to use and maintain. eMarketplace owners can implement several types of processes
depending upon their target audience, operations, and finance models. The greatest benefits
lie with cost reduction for all players and the ability to reach otherwise untapped business
prospects. This paper discusses how UDDI (Universal Description, Discovery and Integration)
and WSDL (Web Services Description Language) work together to form the core architecture
of the next-generation e-commerce model.

Take conventional eMarketplaces like http://www.verticalnetmarketplaces.com/ for example.
They are trying to provide an edge to their customers by aggregating their otherwise
fragmented buying power. This means bringing together service providers (in various
manners, the most common example of which is supply chain management) for easier access
to products and better value for money.

There are certain entities that are common to most e-commerce models of today, for example
Buyers, Sellers, and Marketplaces. Buyers are the customers who want to make use of the
products and services that sellers offer. Throughout this paper, we will refer to buyers as
eBuyers. Sellers have the role of supplying products and services. We will refer to them as
eSuppliers. The Marketplace is the virtual place that resides somewhere on the Internet,
where eBuyers and eSuppliers can meet. We will call it an eMarketplace.

www.manaraa.com

Bilal Siddiqui

While discussing UDDI-based eMarketplaces in this paper, we will also discuss the present
day mechanism for interaction between eBuyers and eSuppliers at existing eMarketplaces.
Interaction between eSuppliers and eBuyers is normally referred to as B2C (Business to
Consumer). eSuppliers can also interact with other eSuppliers through B2B (Business to
Business). An important point to notice is that the idea of eMarketplaces is a subset of e
commerce. E-commerce can also happen if a company decides to sell its products online
through its own web site without any B2B. On the other hand, an eMarketplace allows
multiple eSuppliers to offer their products and services to eBuyers, and other eSuppliers.

There are various ways of bringing together buyers and sellers, which we will discuss shortly,
but some common requirements of possible models have been identified. Let us see these
common requirements first.

Some Common Requirement of All E-Commerce
Models

There are two prime requirements that we shall consider here, those of content management
and interoperability.

Content Management
Whatever model you choose, an eMarketplace will be required to provide eBuyers with access
to eSuppliers' data. For example eBuyers will need pricing and product information. In
present day e-commerce, this is done through one of the following two methods:

1. eMarketplaces have an interface for eSuppliers, where they can update changes in
their internal content. These changes will be presented to prospective eBuyers on
request.

2. All service providers who want to become partners of an eMarketplace will
integrate their content management systems with that of the marketplace. This
would mean they do not have to re-enter information into the eMarketplace's
content management system.

The pros and cons of these options are obvious: the first has approximately zero initial cost
but has a high operational cost (as it requires duplication of content management effort),
while the second is the other way around (high initial cost, low operational costs). Both
initial and operational costs are either borne by an eMarketplace owner or the eSuppliers.
What if we want to reduce the total cost of our eMarketplace? We somehow need to reduce
both the initial and operational costs. We'll show how UDDI and WSDL give us the best of
both worlds.

118

www.manaraa.com

UDDI-based Electronic Marketplaces

lnteroperability in E-Commerce
No business (eSupplier) can serve the entire needs of its customers (eBuyers) alone. It has to
coordinate with other eSuppliers. This is the famous Business-to-Business (B2B) concept. An
eMarketplace owner will be interested in allowing one eSupplier to invoke the services of
other eSuppliers. For example many eSuppliers will use the services of forwarding or shipping
companies. They will therefore invoke the freight-related services of shipping companies.

In present day e-commerce, this is very costly to achieve through an eMarketplace. The
simple reason for that is that every business has its own workflow and resource planning
systems, and the cost of integrating them in most of the cases is not worth the benefit. On the
other hand, the concept of Web Services reduces the cost of interoperability to such an extent
that hardly any business will remain out of the eMarketplace domain.

We are now going to discuss eMarketplace models and features in detail. We will also discuss
the UDDI option for building an eMarketplace, its advantages and architecture. Before going
into detail on UDDI and WSDL, let us first briefly discuss some of the popular models that
are currently available for e-commerce over the Internet:

1. Online procurement portals: These work for the benefit of buyer members. They
provide product and price transparency to buyers. In addition to that they provide value
added services like quality recommendation, comparison reports, benchmarks, etc. to
their customers. An example of this category is http://www.buy.com/.

2. Vertical Exchanges: These portals are buyer and supplier neutral, which means
that they do not act for the benefit of any one side. Exchanges like
http://www.paperspace.com/ and http://www.esteel.com/ are examples of this
category. These portals cover specific vertical markets and try to attract more
business partners (eSuppliers) as well as customers (eBuyers) by providing natural
market conditions where supply and demand conditions prevail.

3. Sell-side eMarketplaces: These act like distribution channels over the Internet, for
example http://www.aspentech.com/. Suppliers become their members and these
eMarketplaces work for their benefit by providing access to otherwise untapped
buyer groups. These marketplaces provide comprehensive services to eSuppliers
ranging from developing strategies to implementing operational plans.

Supply Chain Management Solutions as a Special Case of
e-Commerce

Supply Chain Management is a special topic in B2B e-commerce and we will use this model
to elaborate on UDDI-based eMarketplaces.

119

www.manaraa.com

Bilal Siddiqui

Supply chain management optimizes the way eSuppliers respond to market needs. Therefore
eBuyers only interact with eSuppliers at the eMarketplace. In order to fulfill the needs of
eBuyers, though, eSuppliers utilize a supply chain management solution.

We have shown this idea in the following diagram. It illustrates a supply-chain example
starting when an eBuyer needs a price offer. The eBuyer searches the eMarketplace for
information about eSuppliers who are capable of performing the required job (eSupplier
discovery process). The eMarketplace responds by sending eSupplier A's information. The
eBuyer now raises a service invocation request to eSupplier A. On receiving the request,
eSupplier A searches the eMarketplace for its trading partners (other eSuppliers such as
manufacturers, distributors, and retailers) who can assist in fulfilling the job. The
eMarketplace responds by sending the details of eSuppliers B and C. eSupplier A invokes the
services of eSuppliers B and C (sublevel requests to dynamically located eSuppliers who can
act as trading partners):

Sub-Level Requests to
dynamically located
eSuppliers who can
act as trading partners

r ~ Service Invocation
Request to eSupplier

eSupplier • A • trying to
discover other eSuppl iers
who can act as trading partners

____ _./

Every eSupplier wants to find the best sources to buy from. Similarly, they also want to match
their inventory to market requirements (perhaps through some just In Time concepts). These
types of optimization criteria can be handled by eMarketplaces. For example, the
eMarketplace can allow an eSupplier to communicate their delivery dates and estimates
before dispatch of goods.

An eSupplier becomes registered with one or more eMarketplaces, from where they can sell
their goods or services to other eSuppliers, who in turn sell their good or services to the
eBuyers (perhaps the end users). The eMarketplace puts them together in one place, just like
the original marketplaces where people traded their goods.

120

www.manaraa.com

UDDI-based Electronic Marketplaces

What Is a UDDI-based eMarketplace?
A UDDI based eMarketplace provides the same level of information and the same level of
breadth of services to its customers that a conventional eMarketplace would have offered. It
defines, however, flexible standards for interoperability in order to manage growing
complexity and dynamism in relationships (which means an eSupplier's internal workflow and
content management systems will remain independent of the eMarketplace). It also provides a
significant cost reduction for the implementation of eMarketplaces. This cost reduction is
twofold: due to the existence of a standard UDDI specification, best-of-breed implementations
will be available off-the-shelf (cost reduction for eMarketplace owners), and B2B Integration
for eSuppliers will also become cheaper due to interoperable standards for Web Services (cost
reduction for eSuppliers).

Think of UDDI as a standard process in which you can search for required services, and once
found ask them to serve you. As discussed above, an eSupplier may need to invoke other
services in order to fulfill requirements from eBuyers. At our eMarketplace, one eSupplier
may become a customer (essentially an eBuyer) for other eSuppliers.

If we are able to define industry-wide standards for doing this (searching for and invoking
services), the entire process will appear seamless to its users, although it is distributed all over
the Internet. UDDI (for searching) and WSDL (for describing how services are to be invoked)
are the standards for this purpose.

The only step remaining is to build user-friendly, Web-based interfaces around UDDI and
your eMarketplace is ready.

How Customers and Businesses Participate in a UDDI
based eMarketplace

According to the UDDI specification, two actions can be performed on a UDDI registry:
publishing and inquiry. There are APis (Application Programming Interfaces) provided to
accommodate these actions. They are in the form of messages going to or coming from a
UDDI registry, messages that are human-readable text (a concept called SOAP messaging,
described in the next section). As human-readable text is supported in all platforms and in all
programming languages, there is no problem in supporting the UDDI APis on any platform.

The Publishing API is for the use of service providers. Using this API, a business (an
eSupplier) can expose (publish or advertise) its services to our eMarketplace where their
prospective customers (eBuyers) can search for and make use of their service.

The Inquiry API will be used by eBuyers, to search for products or services of interest at a
UDDI-based eMarketplace. This API specifies several methods to perform general to detailed
(drilled-down) searches.

121

www.manaraa.com

Bilal Siddiqui

A Real-Life Example for a UDDI-based eMarketplace

Take for example the tourism industry in which there are a number of entities that interact
with each other. At an eMarketplace dedicated to tourism, tour operators (eSuppliers) will
offer vacation tours, and eBuyers will buy vacation tours. The tour operators will need to
interact with hotels and car rental services in order to fulfil tour requirements. All these
entities (tour operators, hotels, and car rentals services) are eSuppliers.

How Can We Start a UDDI-based eMarketplace?
A UDDI registry will sit at the heart of our eMarketplace. UDDI is actually a normal database
with a special interface for read and write operations. We can think of the Inquiry API as
UDDI's way of reading or searching through records. On the other hand, the Publishing API
is intended for writing records to the UDDI registry. These records will constitute the
database that contains information about eSuppliers and their products or services.

Why does UDDI define a special mechanism for reading and writing? Why not use some
popular technology like ODBC? Let's go through the sequence of events in history that led us
to the development of UDDI APis.

The Internet emerged with HTTP among the top enabling technologies. Once the Internet
had gained popularity, many techniques emerged for Electronic Data Interchange (EDI)
between applications over the Internet, eventually giving way to XML (which is human
readable text) as the de facto standard for all EDI over the Internet. With the simplicity of
XML, processing tools emerged making its application possible in every industry. If we
consider B2B interactions over the Internet, proprietary and expensive formats have given
way to XML-based EDI.

The next logical step was to combine XML with HTTP, which gives rise to direct messaging
between software objects. Think of XML as the language or grammar used to write business
correspondence and HTTP as the mail or courier service. These two together will allow XML
and HTTP-aware software components to write letters to each other and respond to each
other's requirements, thus fulfilling business needs.

SOAP (Simple Object Access Protocol) is the name of the technology that makes use of XML
and HTTP. It can transport XML documents between software components. This transport is
called SOAP messaging.

SOAP provides a framework for business communication that is independent of the platform
on which it is used, programming language used for implementation, web and application
servers deployed, and data formats used for back-end data storage. Therefore a UDDI-based
eMarketplace might use some ODBC-compliant database at the back end, but it will use
SOAP messaging to expose its functionality to eBuyers and eSuppliers.

122

www.manaraa.com

UDDI-based Electronic Marketplaces

UDDI utilizes SOAP messaging for communication between the UDDI registry and users.
Both Publishing and Inquiry APis are based on XML grammar and currently SOAP is the
only available transport mechanism.

On top of the UDDI registry, our eMarketplace will contain two graphical user interfaces
(GUI) in the form of web sites or another way of interfacing with users graphically. The
search/inquiry interface will deal with eBuyers coming to our eMarketplace, so that they can
search for services of interest; this GUI will invoke the UDDI Inquiry API. The publishing
GUI will interface with eSuppliers (publishing their services), so that they can introduce their
services at our eMarketplace; this GUI will use the UDDI Publishing API.

Let's talk about these interfaces one at a time.

How Will We Enable eBuyers To Use Our eMarketplace?
The search/inquiry GUI will invoke the Inquiry API of our UDDI. It may be normal
ASP/jSP/PHP or any other form of Web page. The GUI should contain search and indexing
options similar to any typical or conventional existing eMarketplace. The main difference lies
with what happens when an eBuyer has found the service they are interested in. Unlike most
conventional eMarketplaces, the search GUI will not redirect eBuyers to the eSupplier's site
blindly. It will rather display the eSupplier's interface details to the customer and allow them
to invoke services. It will also bring the resulting message back to the eBuyer after invocation.
This means that our eMarketplace will be linked to eSuppliers, so that eBuyers will
dynamically access their content management system when they invoke a service.

How Will We Enable eSuppliers To Serve eBuyers At Our eMarketplace?
This is the place where UDDI's Publishing API is used. Our eMarketplace should provide a
Graphical User Interface to cater to publishing requests. Using this GUI, eSuppliers will
publish the details of their businesses and services they offer. They also have the option of
editing their profiles later.

The Publishing API contains certain XML structures. These structures are used to register a
business, publish services, and bind services to any technical model (we will discuss this API
later). Using these XML structures, first of all an eSupplier registers itself. Then it will publish
its services (a single business entity may contain one or more services). The next step would
be to publish WSDL interfaces at the UDDI. This is done through Binding Templates and
Technical Models. A Binding Template binds a service to a WSDL interface. UDDI refers to
that WSDL Interface as a Technical Model.

In simple English, services of any service provider are exposed in terms of one or more
interfaces. These interfaces are described by a grammar called Web Services Description
Language or WSDL for short. In UDDI terminology, all interfaces are called Technical
Models. An example of this type of interface is given and described later in the section How
WSDL Servers work.

123

www.manaraa.com

Bilal Siddiqui

A Binding Template binds the interfaces of a service provider with their back-end
implementations. In order to do this, each binding template creates instances of the Technical
Models. Each instance is called a Technical Model Instance. A Binding Template can have
any number of Technical Model Instances. A Binding Template also contains the URL
address of a SOAP server. This SOAP server hosts the implementation of all the services
described by the Technical Model Instances contained in this Binding Template.

Each of these entities (business, service, binding template, and the technical model) has a
unique key for reference. UDDI identifies them through the key.

What Is the Role of UDDI in Our eMarketplace?
The eSupplier that wants to register itself to a particular conventional eMarketplace has to
write its interface according to the architecture of the eMarketplace. For each eMarketplace,
it will have to rebuild the interfacing requirements separately. With UDDI-based
eMarketplaces, participating eSuppliers have to write their WSDL interfaces only once and
they can get themselves registered with any other UDDI-based eMarketplace without
further effort and cost.

As far as the role of UDDI in an eMarketplace is concerned, the UDDI acts like a central
repository where eSuppliers can register themselves, expose their services and market their
products. The UDDI-based eMarketplace makes B2B integration less costly. We will see this
in more detail in the next section.

What Is the Role of Web Services Definition Language
(WSDL) in an eMarketplace?

WSDL is the grammar in which a business can describe its services. For our UDDI-based
eMarketplace, it provides an interface between the UDDI registry and the business logic of
the eSuppliers. The WSDL file provides not only details about the services of an eSupplier but
also contains information about how to invoke these services, what methods you can call,
what parameters you have to pass to these methods, and what formats will be returned by
different methods.

When a UDDI-based eMarketplace takes an eBuyer to the doorstep of an eSupplier, the
attendant at the business gate is SOAP, with whom the eBuyer will talk using WSDL. The
eMarketplace actually links the customer with the business services interface (the WSDL
interface). We will learn more about WSDL shortly.

124

www.manaraa.com

UDDI-based Electronic Marketplaces

Architecture of a UDDI- and WSDL-based
eMarketplace

At this point, we have already identified the components of a UDDI-based eMarketplace.
Let's list them in one place and discuss the role of each:

1. UDDI Registry Interface for UDDI users.

2. Web-based Publishing Interface.

3. Web-based Inquiry/Search Interface.

The following diagram shows a UDDI-based eMarketplace, its Web-based interfaces, its
UDDI APis, back-end data storage, eSuppliers, and eBuyers:

eBuyers

r

7 ~ rn ~

Web-based I Inquiry/Search
Interface

ls:k-End data storage L (Not Standard) J

UDDI Registry Interface for Users

eSuppliers

r------.

rn rn rn
Web-based
Publishing
Interface

UDDI-Based
eMarketplace

The UDDI specification only defines a set of APis and does not care about back-end data
format. This component will provide a standard UDDI interface and is not aware that it is
being used as part of an eMarketplace. It is simply an interface to the UDDI registry.

125

www.manaraa.com

Bilal Siddiqui

Web-based Publishing Interface Module
This module should provide all the functionality that is required by eSuppliers (companies
who want to sell products/services at our eMarketplace). This should include GUI
components to allow the following:

1. Publish company information.

2. Publish services.

3. Publish technical models or WSDL interfaces that the user wants to expose.

4. Provide the URL address of their services.

5. Advertise according to classification and categorization of services.

Web-based Inquiry/Search Interface
While the Publishing GUI is meant to be used by professionals who are expected to have
technical knowledge of Web Services, the Inquiry GUI will mostly be used by eBuyers, who
may be ordinary Internet users (valued customers of our eMarketplace). We cannot expect
them to have any type of technical knowledge.

Therefore, the design of the Web-based Inquiry/Search GUI needs special care for ease of
use. This search GUI is more like a "Search Engine". Refer to my article" UDDI as a Search
Engine" at WebServicesArchitect.com, which provides in-depth discussion of this subject (see
http://www. webservicesarchitect.com/content/articles/siddiq u iO 1 .asp).

UDDI is Very Good, But it is Not Enough for an eMarketplace.
The above discussion leads us to the points where:

o An eSupplier has the capability of exposing their services.

0 An eBuyer in need of these services can search for them.

There are two important things missing in this discussion up till now:

1. How an eSupplier will implement their services that can be exposed at an
eMarketplace.

2. How our eBuyers in search of services will actually invoke or make use of
these services.

These two things are outside of UDDI's domain, so they have to be handled by other
enabling technologies. Before we carry on with our discussion of how to achieve this, let us
look at the following diagram, which explains the sequence of operations that completely
explains this scenario:

126

www.manaraa.com

Service Provision
Concept

__J

'f.
Service

Implementation

_ 'f._ -

Web Service
Deployment I

Service as a J
component of UDDI·
based eMarketplace

I
,.- '

Search result:--1
containing list of
relevant services

Service Rendered

UDDI-based Electronic Marketplaces

Implement Business Logic

WSDL interlace implementation

Publish/ Advertise

Service user runs a search or
executes a query

Service Invocation

All components and actions shaded are within the UDDI domain. What about the rest? Let's
examine them.

Any business (eSupplier) can start with an idea or a business concept. Naturally, the first step
is to implement the business logic associated with that concept. Our UDDI-based
eMarketplace does not impose any restriction on this implementation. You can use any
technology, Operating System, web server, programming language, design methodology, or
architecture for implementing the business logic. A UDDI-based eMarketplace will bring
together the business logics of different eSuppliers, therefore it hardly matters where the
business logic resides. This also means if you have an existing service already implemented on
the web server in whatever way, you can proceed with the next step.

127

www.manaraa.com

Bilal Siddiqui

The next step is to implement the WSDL interface for the eSupplier's service. UDDI does not
mandate using only WSDL interfaces. We can use any type of interfaces, but for the time
being WSDL is the most popular technology available for use with UDDI registries. Therefore
we will restrict our discussion to WSDL. WSDL is, as its name implies, a grammar to describe
Web Services. The idea is to describe a Web Service in such an abstract way that it remains
independent from back-end implementation. This is how we can allow any type of business
logic implementation.

Once the WSDL interface has been written, the service is deployed over a SOAP server. The
eSupplier will need a SOAP server compatible with their Web server. There are SOAP
servers available for every considerable web/application server ranging from Microsoft's liS
to high-end products like IBM's WebSphere.

We enter the UDDI domain at this point. All the eSuppliers at our eMarketplace will need to
advertise their services before they can start online business. This process is called Publishing
Web Services. UDDI provides a detailed mechanism for this purpose, which eSuppliers will
follow to get them published at our eMarketplace.

Once published/advertised at our eMarketplace, we can safely say that the Web Service is
now a component of our eMarketplace. This allows eBuyers to search for the Web Service.
When an eBuyer receives the search results (list of services of interest), UDDI's job is finished.
The next and final step is to invoke the services found. This is purely a WSDL task.

We are now ready to find "how to do "answers for the above defined tasks.

How WSDL Servers Work: Where Will a WSDL/SOAP Server
be Located?

An eSupplier can use WSDL grammar to describe their services. There are four important
aspects to doing this:

128

1. The name of the service and names of various procedures in the service. For
example an eSupplier may be a goods-forwarding company interested in
exposing procedures like getQuotation and shipToDestination.

2. A description of the service and each procedure in simple English. These
descriptions will be presented to eBuyers for their easy understanding and ready
reference. WDSL allows a separate description of each procedure. For example,
an eSupplier may give the following description of their getQuotation
procedure/method: "This method will calculate the total cost of your package
from source to destination".

www.manaraa.com

UDDI-based Electronic Marketplaces

3. Information that an eSupplier needs from an eBuyer before they can make use of
the service. If we take the freight-forwarding example discussed opposite, the
information required will be source and destination places, weight and
dimensions of the packet, and whether the packet contains fragile equipment.
This information will become the parameters that eBuyers will send when
invoking Web Service procedures.

4. We also need to specify the format in which our service will respond. For
example, our service may respond by sending a message as shown in the
following diagram:

Currency= USD

Freight = 450.50

An eSupplier may choose to implement their service in any way, so that there can be any
number of fields in the response. They can also specify complex structures having fields
within fields (boxes within boxes).

WSDL grammar is designed to specify each of the above four aspects. We have written a
sample WSDL interface in the form of our boxes within boxes structure. The structure is
meant to be self-explanatory (the primary purpose of WSDL) so we do not include any
descriptive notes for this WSDL in our paper:

129

www.manaraa.com

Bilal Siddiqui

Name of WSDL Interface: Quotation
Description: Use this service to get the prices of computer hardware components.
URL Address of WSDL File: http:/ ;www.ourcompany.com;quotation.wsdl

List of Methods:
1. Get List of Items
2. Get Models
3. Get Prices
4. Get Complete Quotation

Method Name: Get list of Items
Description: Use this method to get a list

of all Items our company sells

Input Parameters

No input parameter
will be taken

Output Parameters

Name: Item Names
Type: List of Strings
Description: Item
names will be a list
of products that we sell

Method Name: Get Price
Description: Use this method to

get the price of a particular model

Input Parameters

Name: Model Number
Type: Number
Description: Unique
model number
of interest

Output Parameters

Name: Price
Type: Number
Description: Price
of the selected model

Name: Validity Period
Type: Date
Description: The date
up to which current
quoted price is valid

Method Name: Get Models
Description: Use this method to get a list

of all models for selected item

Input Parameters

Name: Item Name
Type: String
Description: Item
name will be the
name of the product
of interest.
First use the Get List of
Items method to get a
list of all items that
we sell

Output Parameters

Name: Model Number
Type: List of numbers
Description: Models
of the selected item
that we sell

Name: Features
Type: List of Strings
Description: List of
features against each
model number

Method Name: Get Complete Quotation
Description: Use this method to get a

complete quotation of selected models
of various items

Input Parameters

Name: Model Numbers
Type: Ltst of Numbers
Description: The list of
model numbers for
which you want to get
a complete quotation

Output Parameters

Name: Price
Type: List of Numbers
Description: Prices of
the selected models

Name: Validity Period
Type: Date
Description: The date
up to which current
quoted
price is valid

So we have described our service, but it is still an abstract description without any back-end
implementation bound with it. This binding of abstract description with implementation is the
job of a SOAP server.

130

www.manaraa.com

UDDI-based Electronic Marketplaces

All WSDL files have to be deployed on SOAP servers (SOAP is the only binding option
available for now, however WSDL allows a flexible framework where other future bindings
can also work). This deployment means the URL address of the SOAP server. SOAP servers
work on simple Web and Application servers like Apache or IBM's WebSphere. Therefore
SOAP URLs can be simple Internet addresses like
http://www.myservicedeployment/myfirstbinding/mySOAPserver/.

lnteroperability in SOAP
It is natural that a SOAP server will talk to a SOAP client on the other end. This SOAP client
will be a part of our eMarketplace. The following diagram represents this simply:

UDDI·Based / ~
eMarketplace

SOAP Client

In the diagram you can note the following points:

0 The SOAP servers of all eSuppliers are OUTSIDE the domain of our eMarketplace.

o There is a SOAP client within the domain of our eMarketplace. This SOAP client is
capable of communicating with all SOAP servers of eSuppliers.

Curious readers may have two questions at this point:

1. What are the business processes in our UDDI-based eMarketplace that require a
SOAP client?

2. SOAP servers are outside the domain of our eMarketplace. This means our
business partners are at liberty to choose any SOAP server. Then how can we
make sure that SOAP servers will correctly interact with our SOAP client?

We will answer these questions in turn.

131

www.manaraa.com

Bilal Siddiqui

Responsibilities of SOAP in Our UDDI-based eMarketplace
The primary purpose of our SOAP client is to allow eBuyers to invoke services
provided/offered by eSuppliers. As explained earlier, WSDL-based services are deployed on
SOAP servers.

WSDL is only capable of describing services in terms of four points that we showed earlier in
our WSDL illustration. Once described, WSDL leaves it to the SOAP binding to allow access
to service implementation. It is our SOAP client that will coordinate with web site users to do
this in a user-friendly manner. An eBuyer is not expected to know anything about the
technology behind SOAP, WSDL, or UDDI. It is therefore important that our eMarketplace
presents a user-friendly GUI that hides the technical details at the back end.

WSDL and SOAP provide an ideal framework for distributed computing. WSDL can tell us
names of methods in a service and the format of message that we can exchange with that
service. Once we know these details about a business service, we can use SOAP to access the
objects of service providers.

Therefore, we have a two-step procedure: first read the WSDL to get a description of the
services, and then use SOAP for actual exchange of messages. This is the basic concept of
loosely coupled components. Different vendors and companies will design and implement
software components according to the needs of specific business procedures. These
components will become part of the Internet business community. Users of these components
will either be Internet surfers (or our eMarketplace customers) or other software components.
B2B and B2C integration is next to impossible without implementing the concept of loosely
coupled software and business components.

How Our SOAP Client Will Work with the SOAP Servers of
eSuppliers (SOAP lnteroperability)

SOAP interoperability is still not 100% trouble-free. The latest version of SOAP is 1.2, published
at W3C as a working draft on December 17, 2001. Most SOAP implementations available for
the time being claim to be SOAP 1.1-complaint. We expect SOAP to become a W3C
recommendation some time in late 2002. Until then, there are a few issues that may hinder
interoperability in some places. All these issues are highly technical and therefore beyond the
scope of this paper. Following are web sites that contain more information about SOAP
interoperability:

132

o http://www.xmethods.net/soapbuilders/proposal.html (SOAP interoperability Test
specification).

o http://www.whitemesa.com/interop.htm (SOAP builders interoperability lab).

o http://www.xmethods.com/ilab (SOAP builders interoperability lab).

o http://www-1 06.ibm.com/developerworks/webservices/library/ws-asio/ (An article
on SOAP interoperability).

www.manaraa.com

UDDI-based Electronic Marketplaces

How Will Businesses Get Involved in Our eMarketplace?
UDDI provides a mechanism that allows eSuppliers to publish or advertise their services. The
process is not very different from entering information about their company into our database.
This information also includes registering their WSDL interfaces at our eMarketplace. Once
information about our partners is inside our database, the users of our eMarketplace can
search it; they can also invoke services of interest after searching for them. Some readers may
think this is the same old process found in all conventional eMarketplaces, but there are two
marked differences:

Every conventional eMarketplace has implemented its own model for categorization or
classification of products and services. They do not follow a uniform standard for this
purpose. On the other hand UDDI has proposed using the well-known product classification
architecture of UNSPSC (http://eccma.org/unspsc/). It also allows using other classification
methods, where each classification method will be identifiable from the other. This would
mean that our business partners would register at our eMarketplace through an already well
known classification technique.

Without the concept of WSDL interfaces or Web Services, eSuppliers can only publish at an
eMarketplace and cannot integrate their content management systems with ours without
bearing the high costs of B2B integration.

We will now discuss these two aspects in detail, specifically the classification (taxonomical)
architecture of UDDI and the methodology to bring down the cost of B2B integration.

Taxonomical Architecture
Without proper classification and categorization, large content cannot be managed effectively
and browsing through it will be very difficult. When we discuss an enterprise scale where data
consist of millions of records, it will be almost impossible to find any specific piece of data
without categorization.

With the advent of the Internet, a huge amount of data is summed up. Search engines make
it possible to find information from the Internet, by categorizing information under certain
headings and storing the information for a quick keyword-based search. Any web user can
browse through categories to reach the required information. Using a search engine such as
Google, a customer can drill down through categories and subcategories to select the
desired product.

Now consider eMarketplaces like buy.com. Each existing eMarketplace develops its own
structure for categorization. There is no standard architecture available which can
accommodate the categorization needs of an e-business community. This creates problems for
both eBuyers and eSuppliers. This problem is further aggravated when we are discussing B2B
integration. In this case, we would like software tools to browse and search through product
categories. B2B integration will only be possible if the involved parties are following a
standard classification technique.

133

www.manaraa.com

Bilal Siddiqui

The idea of Web Services needs to address all aspects ofB2B integration. UDDI is the part of
Web Services where all the data is stored. There is, then, a need for such a flexible
architecture for categorization that it can accommodate the needs of all e-communities.
UDDI's classification technique allows communities to use well-known categorizations. It is
actually a flexible architecture where new categorization systems or structures can
dynamically be updated and be part of a system which UDDI calls its taxonomical
architecture.

In UDDI taxonomy, any organization can register their categorization architecture, which will
be made available to all users of that registry. Instead of developing their own taxonomical
architecture, which itself needs special expertise, UDDI adopts all the well-known
taxonomical architectures that have matured with time. An eSupplier is free to use any
taxonomical architecture they feel fit for their business.

How Do UDDI and WSDL Bring Down the Cost of 828
Integration?

The major point where WSDL-based B2B integration reduces cost is the use of standards. An
eSupplier will implement their interface once and can then be registered with all UDDI
registries, ours and others. Equally, our eMarketplace can read WSDL interfaces from other
UDDI registries and make their services available at our eMarketplace. In fact, there is a
standard mechanism available for data exchange between registries.

We will now discuss the methods that our business partners will use to expose or publish their
services at our eMarketplace.

Mechanism for Publishing at Our UDDI-based eMarketplace
UDDI offers the following methods for publishing services. These will be utilized by
eSuppliers to publish their services. Our eMarketplace should have a comprehensive GUI for
this purpose. Note that we have slightly simplified the technical details associated with these
methods, maintaining our focus on the business requirements of a eMarketplace:

1. Get Authentication Token.

2. Save Business.

3. Delete Business.

4. Save Service.

5. Delete Service.

134

www.manaraa.com

UDDI-based Electronic Marketplaces

6. Save Binding.

7. Delete Binding.

8. Save Technical Model.

9. Delete Technical Model.

Get Authentication Token: This is the first method to be called by a publisher (an
eSupplier). Using this API call, a publisher provides the Operator site with a username and
password against which they get an authentication token. The information in this
authentication token is then provided with every API call to the Operator site.

Save Business: This API call is used to create a new business entry or edit any existing
business entry. This is the first entity to be created and all the other entities will be created
within a business entity. The Save Business message contains two parameters: first is the
authentication token obtained by the Get Authentication Token message, and second is a
Business Entity structure. The Business Entity structure contains general information about the
business, such as business name, address, contact details, description of business, etc. It also
contains information about taxonomies used by this business. This method sends back a
unique business key through which a business can be referred to in the future.

Delete Business: This API call removes a business entry from a UDDI registry. This message
takes two parameters from the publisher: one the Authentication Token element, and the
second the unique business key (returned by Save Business API call).

Save Service: This API call is used to add a new business service or updates any existing
one. A business service can only be added to an existing business entity. It takes two
parameters: the Authentication Token, and the Business Service structure. A business can
contain any number of services it feels like. Each service will contain a name of the service, its
description, and a list of Binding Templates (each template will contain the URL of a SOAP
server, where the service is deployed). This call returns a unique service key.

Delete Service: The Delete Service API call is used for removing business service/services
from a UDDI registry. It takes the two parameters: first is the authentication token, and
second is the unique service key, which the publisher got while saving the service for the
first time.

Save Binding: The Save Binding API call is used for saving a new Binding Template or
update an existing one. Each service contains at least one binding template, which binds the
service to a Technical Model Instance. This API call takes two parameters: the Authentication
Token, and a Binding Template structure. The Binding Template structure contains a
description and an access point (the address of SOAP server deployment of the Binding
Template). This Binding Template structure should contain all the Technical Models
Instances that the service wants to bind with one particular SOAP server.

135

www.manaraa.com

Bilal Siddiqui

Delete Binding: This API call is used to remove a binding template. It takes two parameters:
the Authentication Token, and the binding key returned by the Save Binding API call.

Save Technical Model: This API call registers or updates a Technical Model. A Technical
Model can be the WSDL interface from a company, a fingerprint (discussed in the next
section, Common Business Protocols and Practices), or the categorization/taxonomy architecture.
It takes two parameters: first the authentication token, and second a Technical Model
structure (containing a name, description, and address of a document that may be a WSDL
file). This method will return a unique key, which will be used to identify the technical model
later on.

Delete Technical Model: This API call deletes the technical model. It will take two
parameters: first is the authentication token, and second is the Technical Model key returned
by the Save Technical Model API call.

Common Business Protocols and Practices
So far we have discussed B2B integration through UDDI- and WSDL-based eMarketplaces.
But there is another dimension of this idea yet to be explored. Think of the business
operations of one particular business, a shipping business for example. The business process
of one shipping company is not expected to be very different from any other shipping
company. For example the Get Total Freight method in the WSDL of one shipping company
will take roughly the same parameters, no matter who implements them. Similarly, a Get Per
Night Charge method in the Web Service of a hotel will generally be similar to the same
method in any other hotel's service.

This gives rise to the concept of Common Business Practices or Protocols. It is possible to
build standard WSDL interfaces for any particular business sector. These protocols will reflect
and cater for all the needs of that particular business community and all businesses will use
that protocol. This is what UDDI calls a Fingerprint.

But who will design these fingerprints? Naturally it should be some expert in their
community, someone who knows all the requirement of their business discipline. Perhaps the
most popular fingerprint will come from standards organizations through the well-known
community process where all interested parties work on the draft of the proposed protocol
before it can become a standard. The organization that designs fingerprints will also be
responsible for maintaining them so that they remain relevant in a dynamic business world.

We have proposed a sample fingerprint for the Computer Hardware industry in our WSDL
illustration. It is only an example to support UDDI's idea of fingerprints and is not intended to
fulfill actual professional requirements. Readers will notice that fingerprints are just the WSDL
interfaces that are accepted as standard interfaces of a particular business community.

136

www.manaraa.com

UDDI-based Electronic Marketplaces

We have drawn our WSDL illustration so that it can be used as a template or a form. Business
experts can fill it in with their business ideas. Software analysts and designers can use the
completed (filled in) forms for WSDL and service implementation.

Readers may question the practicality of the idea of Common Business Protocols, especially
when supply chains may have very small companies acting as eSuppliers. In the past, large
players in every industry have managed to dominate the standardization processes. This one
point may hamper the lowering of B2B integration costs.

Advantages of Common Business Protocols
The advantages of this idea are threefold:

0 Businesses will have a reliable and relevant interface made by experts suitable for
both their business needs and the requirements of going on-line. If there were no
Common Business Protocols, every business would have to experiment to arrive at
best practices. This is one point where cost reduction is likely.

0 We will have known requirements to cater for at our eMarketplace. Without
fingerprints, eBuyers would have to read and understand different interfaces from
similar businesses. Fingerprints allow uniform behavior for all businesses that
implement them.

0 We can also expect that best-of-breed implementations will be produced for popular
fingerprints. Buying an off-the-shelf solution is normally a cheaper and better option
than developing from scratch.

This does not stop businesses (eSuppliers) from implementing more than one fingerprint.
They can implement any number of fingerprints, as they like.

How To Publish Fingerprints at a UDDI Registry
UDDI uses Technical Models to publish fingerprints. The standards organization that designs
a WSDL interface to be used as a Common Business Practice will publish it once. Any
eSuppliers interested in implementing that fingerprint will register an instance of it.

This means eSuppliers will use the WSDL interface of the fingerprint, implement it on the
Web server (or buy an off-the-shelf implementation), and include a reference to that
fingerprint on our UDDI-based eMarkeplace as part of their services.

Every fingerprint receives a unique Technical Model key at the time of being registered at our
UDDI registry (recall the Save Technical Model API call we discussed in the last section).
This technical model key will be utilized to refer to this fingerprint while creating its instances.
An eSupplier may also register the instances of their fingerprints at more than one
eMarketplace. In fact most eSuppliers would like as much exposure as they can get:
implement once and be exposed everywhere is a very attractive idea.

137

www.manaraa.com

Bilal Siddiqui

At this point we would like to discuss the impact of defining fingerprints on two of the
present-day e-commerce models: vertical exchanges and supply chain management.

Vertical Exchanges

Portals like http://www.esteel.com/ or http://www.paperspace.com/ are primarily B2B
eMarketplaces serving very specific business communities (esteel serves only the steel industry
and paperspace covers only the paper industry). As they cover the supply chain of a specific
industry from top to bottom, they are referred to as Vertical exchanges.

This type of B2B portal can work around a family of related fingerprints. They are specialized
in their field and therefore need only a few fingerprints registered at their UDDI registry.
They also have an option of getting their eMarketplace exposed at other eMarketplaces. For
this purpose, UDDI allows a mechanism for one registry to exchange its data with others.
Therefore specialized eMarketplaces can have their members automatically listed at their
friendly (partner) eMarketplaces.

Is there any possibility we could have achieved this level of B2B integration with conventional
eMarketplaces? It seems unlikely.

Supply Chain Management
Fingerprints are also of paramount importance for supply chain management in all types of e
commerce. You may wish to refer to our first diagram where we have shown an eBuyer
making use of the services of an eMarketplace.

The eSupplier will become an eBuyer for other businesses. We will now see how a
fingerprints-based supply chain works. WSDL allows loose coupling between components and
considerably reduces the cost of integrating your workflow with the output of your suppliers.
In the absence of common business protocols, businesses will need to study the WSDL
interfaces of each of their B2B suppliers. Every company will implement its own business
interface. This means if you are a service provider at our eMarketplace and you want to make
use of services provided by other businesses, you will need to incorporate the WSDL
interfaces of each of your suppliers separately. Additionally, there is always a chance of
finding more competitive suppliers in the future, which means implementing new interfaces is
an on-going job.

This one problem will remain an obstacle in B2B integration until online business
communities agree on common business practices. Once we have common protocols to work
with, all our B2B suppliers will automatically become integrated with our supply chain. We
will need to implement tools to coordinate with fingerprints instead of interfaces from
individual suppliers. The rest of the process will not change. Fingerprints will follow the same
WSDL grammar and therefore the process of invoking specific methods in an interface will be
the same.

138

www.manaraa.com

UDDI-based Electronic Marketplaces

No business can imagine working without using e-mail. Why? The cost advantage ratio is such
that you cannot avoid using it. What about e-commerce? Most companies can survive without
doing online business. UDDI and WSDL, though, will reduce the cost of B2B integration to
such an extent that it will be a rare company that chooses not to go online.

The Next Generation Dot Com
Web Services are targeted at lowering the cost of B2B integration through the standardization
process. Cost reduction naturally results in a favorable cost-benefit and feasibility analysis.
This does not mean, though, that Web Services can do magic to make every investment idea
feasible and justified.

B2B integration with conventional e-commerce was accompanied by a lot of media hype. The
result was unjustified investments that led to the failure of many dot com ventures. The lesson
to be learned by prospective eSuppliers from previous mistakes is to consider the amount of
value addition and extra advantage gained by going online at a UDDI-based eMarketplace.
The same applies to eMarketplace owners as well. Lowered costs of B2B integration at UDDI
based eMarketplaces needs to be compared to specific gains in particular industrial sectors.

A Pragmatic Approach To UDDI-based eMarketplaces
We have already discussed the roles of eMarketplace owners and eSuppliers. UDDI and
WSDL together can ensure B2B integration by providing the concept of components loosely
coupled with each other through interfaces. But this is not enough for practical B2B to happen
on a UDDI-based eMarketplace. The following are two important requirements without which
no B2B or eMarketplace can happen:

D Security.

D Transactions across enterprises (from one eSupplier to another eSupplier).

The W3C has released two specifications (XML Encryption and XML Digital Signatures) that
control various aspects of end-to-end security in Web Services (authentication, exchange of
keys, encryption, etc.). Refer to http://www.w3.org/ for more details.

Cross-enterprise transactions are an interesting topic, where standardization can offer a few
features that were not possible without having interoperable interfaces. This is the concept of
long-life electronic transactions, in which eSuppliers can invoke the services of each other as
part of a B2B transaction.

A complete transaction consists of a sequence of service invocation requests. The result of any
single service invocation request can affect the entire transaction. A transaction can exist for
days or weeks before concluding. Refer to the OASIS web site (http://www.oasis-open.org/)
for details about Business Transaction Protocol (BTP).

139

www.manaraa.com

Bilal Siddiqui

On a pragmatic analysis, UDDI, WSDL, SOAP, XML Encryption, and XML Digital Signature
will be needed to implement a complete eMarketplace. Soon interoperable implementations
of all these will be available off-the-shelf. Thus, an eMarketplace implementation will largely
be a system integration task.

Conclusion
We have discussed several technologies in this paper. Together they can form a UDDI-based
eMarketplace. We will summarize the technologies involved:

140

o UDDI is a set of APis for publishing and search operations.

0 We can build eMarketplaces around UDDI registries.

o WSDL is a grammar to describe interfaces for Web Services.

0 Service providers will use WSDL interfaces to expose/publish their services at our
eMarketplace.

o Customers (users of our eMarketplace) can invoke services through their WSDL
interfaces.

0 Fingerprints are standard WSDL interfaces for specific business communities.
Fingerprints can standardize the way in which businesses interact with each other.
This will considerably reduce the cost of B2B integration.

www.manaraa.com

UDDI-based Electronic Marketplaces

141

www.manaraa.com

Author: Kunal Mittal

• Technical Challenges

• Current Shortcomings

• Web Services Benefits

•

:~ ·:~ ;~ ~~ .'' ~- ~~ ;:. - - ~··- 4.' ' -;- ·~ ~u~-~~~·~ .. "l·.·: .~·~: •
·~ ~ , -.J~·~ r~ :_ '.":. ·~ ~ .~ .': : ~ .. - , :~' - ;'.1i'r

www.manaraa.com

Web Services and the Real Estate
Industry

Web Services is a technology with tremendous potential. In selected industries, such as
Financial, Insurance, and Travel, companies are already beginning to tap into the power of
Web Services which enables them to integrate easily with new business partners, provide
powerful new services to consumers, and position themselves for long term growth. Web
Services can also provide the following benefits:

0 Faster time to market, increased employee productivity.

0 New and value added services, at lower costs.

0 Quicker and dynamic partnerships, with efficient B2B Collaboration.

This paper focuses on how Web Services can revolutionize the real estate industry. We
concentrate on the residential real estate industry, identifying the complex nature of a real
estate transaction. It emphasizes the fact that the number of distinct people involved in a
single transaction, and the coordination and management of these people to serve the best
interests of the buyer and seller, is an intricate process. We present ideas on how Web
Services can be used to streamline these interactions. The concepts described in this paper
can be similarly applied to the commercial real estate industry.

www.manaraa.com

Kunal Mittal

Technological Challenges Faced By the Real Estate
Industry

The rapid change in technology affects the interactions between the different parties
involved in a single real estate transaction, such as the buyer, seller, their agents, their
mortgage and title companies, and various other parties such as home inspectors, property
appraisers, notaries, home insurance agents, and so on. Web Services technology allows
these individuals or companies to interact and achieves a better, faster, cheaper, and more
reliable way of conducting business. Seeing the number of people involved within a single
real estate deal, it is easy to see the benefits of a cross-platform and asynchronous solution
to address these complications.

Individuals seeking to buy or sell a house are getting more "Internet savvy". They are using
the Internet to explore their options, such as choosing a real estate agent. Hence, it is
becoming increasingly important for realtors to provide online services to win more clients.
For example, they might want to provide statistical information about the various properties
listed for sale, comparable sales, etc. from accredited sources, all at the click of a mouse.
Realtors need more power than the Multiple Listing Service (MLS) system to present their
clients with the best possible options. The MLS system allows the listing of a property for sale,
to be viewed by multiple realtors. Many realtors poll this system and display a subset of
listings on their own sites. Access to this MLS system, however, is not simple and is difficult to
automate. The Internet evolution has brought sharp competition between realtors, forcing
them to tailor their services according to the needs of the client.

After the difficult task of choosing a realtor to help the buying or selling process, an individual
has to go through hundreds of sheets of papers - understanding legal jargon, various clauses
regarding the deal, understanding all the provisions, etc. In addition, the individual also has to
deal with various third parties to be able to buy or sell the house.

Various businesses such as agents, contractors, mortgage companies, and insurance companies
involved in the real estate process now provide their services on the Internet. Real estate
communities are emerging to provide a subset of the services required for a single transaction.
These services, however, do not follow any standards and do not integrate with other services
to provide a one-stop, best-of-breed shop to a person trying to initiate a real-estate transaction.
Individual businesses involved in some aspect of a real estate deal use different technologies.
Their internal processes are often not fully automated and integrated with their service
offerings. Even as a standalone service, they might not be making the best use of technology.
Thus, integrating one service or business another is not on the horizon for such companies,
mainly due to the prohibitive costs of implementing technology.

The following diagram shows the typical interactions for the purchase or sale of a single
home. Everybody needs to talk to everyone else. The amateur buyer or seller is stuck in the
midst of various real estate professionals:

144

www.manaraa.com

MLS

Insurance
Company

/

Web Services and the Real Estate Industry

Mortgage

0
Individuals seeking to engage in some sort of a real estate deal go online and get quotations
from various real estate agents, and can read a lot of interesting articles and tips on how to
choose an agent, how to buy or sell a house, and so on. One such site is Home Gain
(http://www.homegain.com/). From there they can go to another web site, such as Priceline
(http://www.priceline.com/), where they provide financial information and have various
mortgage companies bid for their loan. Then they could go to a third web site such as
lmproveNet (http://www.improvenet.com/), to find contractors for home repairs. After all this,
there are still large amounts of paperwork involved as well as the management of finances,
taxes, and insurance. When the interest rates drop, they are back in the market looking for the
best ways to re-finance their loans.

As an end user, they need a real estate portal or community that provides them with all of the
above and much more without their having to go through all the trouble. A community portal
that can provide these features seamlessly to a client will be best positioned for long-term
success. A community portal could offer various services, implemented as Web Services. A
sample list of services is shown below:

Real Estate
Service

Listing of Real
Estate Agents

Mortgage
Companies

Description

Dynamically generated list of agents based on the user criteria.

Dynamic application process for the pre-approval of a loan, and
then the final loan approval.

Table continued on following page

145

www.manaraa.com

Kunal Mittal

Real Estate
Service

Contractors

Insurance
Companies

Utilities

Value-added
Services

Description

Dynamic list of contractors to provide appraisals, inspections,
repairs, and other services.

Dynamic list of companies providing home insurance services.

List of utility companies (Water, Electricity, Garbage, Gas and
Phone) providing services to the house.

Statistical data on the locality, house, schools, etc.

Shortcomings of Current Technologies
Current technologies, at best, allow the real estate industry to follow some sort of a Community
Model. Businesses like Home Gain are expanding their service offerings to provide a single one
stop shop for a buyer or seller. They are expanding services to allow the management of the
complete or a major portion of the real estate transaction from their web site.

This, however, is not enough. Any business that wants to offer services has to register with the
community site and follow certain rules and regulations. This process is tedious as the new
business might be using a different set of technologies to the site offering this community
service. The average time to integrate a new business could be several weeks to several
months for both the community site as well as the business.

Furthermore, the new business might be required to follow certain templates, pricing
procedures, and other restrictions that might not allow them to be as competitive as they
would like. Many times, the business might be required to pay a commission or fee to be
listed on the community site. It would retain little or no control on how people find and
choose their services amongst the other competitors. This is the primary reason the above list
of services needs to be provided as Web Services.

Benefits from Web Services
Why would the real estate industry want to use Web Services? Web Services is the first
technology that truly addresses the issues outlined above. The power of Web Services such as
dynamic discovery of services (UDDI), common messaging platform without language
dependencies (XML-based SOAP), and dynamic description of services (XML-based WSDL)
allows for easy interactions with other required services to complete the transaction successfully.
Services can find each other, negotiate service-level agreements (SLA), and exchange the
required data, all without the need for traditional Enterprise Application Integration (EAI).

146

www.manaraa.com

Web Services and the Real Estate Industry

If businesses expose their services using Web Services standards (SOAP, WSDL, and UDDI),
a quick e-Marketplace of services can be formed, where individuals can potentially describe
their requirements and allow the entire e-Marketplace of businesses to bid on their contract.
This process can happen dynamically without ties to any community site, and without being
restricted by the businesses that the community site has registered. This is, however, a long
term vision. We do not see an e-Marketplace forming in the real-estate industry for at least the
next two to three years. Although it takes merely hours to implement Web Services, the real
return on investment (ROI), particularly for such an e-Marketplace, will not be seen until
there is a critical mass of real estate service providers that wrap their services using Web
Services technologies.

In the short term, more traditional style community sites will prevail. Thus, we still need to be
able to justify the ROI in order to get widespread adoption of Web Services as the new
standard for real estate applications. How can community sites differentiate themselves by the
use of Web Services? What are the short-term benefits of Web Services?

Business Drivers
Currently, any new real estate firm (individual realtor, mortgage company, title company,
home insurance broker, etc.) that wants to integrate with any of the existing real estate
communities needs to spend weeks to months with traditional EAI. EAI is difficult as the
underlying applications can be built on different technologies such as Visual Basic, C++, java,
etc. Thus, companies can extend the life cycle of existing applications by wrapping their
existing business services as Web Services.

Web Services are built on top of XML, which provides a language-independent integration
platform. It allows an enterprise to expose some core services so that third parties can
combine these and resell value-added services. It shifts the focus from integration to
concentrating resources on its core abilities and providing enriched homogeneous
environments. Web Services enable a more consistent and uniform experience for the buyer
or seller, and allow them to aggregate and personalize data and services from a variety of
service providers.

The use of Web Services allows real estate firms to focus on new services, and provide a faster
time to close a deal in order to gain competitive advantage and more exposure to clients.

Technical Drivers
There are significant technical drivers that push Web Services to become the technology
platform of choice for real estate applications:

1. Standards-based development - easy to build, manage, extend, and integrate.

2. Flexibility of solution - clients can combine the services to meet their needs.

3. Infrastructure - Standards-based application server vendors, such as BEA and
IBM, provide technology containers to deploy and manage the applications.

147

www.manaraa.com

Kunal Mittal

4. Common language communication - Web Services technologies allow
different services to communicate in a common language.

5. Interoperability - Web Services technologies allow different services to
communicate using a common language.

Web Services Technologies
Here, we will briefly describe the primary three new technologies that enable Web Services.
Using UDDI, SOAP, and WSDL, an application developer can easily create and interact with
Web Services. These technologies are built on top of XML that provides a language
independent grammar for negotiation. HTTP, HTTPS, or other protocols (such as SMTP) can
be used as the transport layer to pass information between Web Services over the wire.

Protocol

UDDI

SOAP

WSDL

Description

Allows the discovery of a Web Service

Message exchange protocol for the interactions between the Web Services

Defines what the Web Service can do

The following diagram shows how these technologies can be used in a typical flow of
messages between a buyer and the real estate agents and mortgage companies:

SOAP (XML) Message

FindReaiEstateAge~

\ """"""""""" """"\'
UDDI Discovery UDDI Discovery

~___
(§rtgage Com3

A SOAP message can be sent to a "find real estate agents" service with some search criteria. This
service is one provided by a community site as described later. The services can then use UDDI to
return a list of agents. The contract between the buyer and agents can be negotiated using WSDL.

148

www.manaraa.com

Web Services and the Real Estate Industry

Dynamic Discovery Using UDDI
UDDI (Universal Description, Discovery, and Integration - http://www.uddi.org/) is the
current technology enabling dynamic discovery of Web Services. As Web Services are
adopted, real estate services can list themselves in UDDI repositories provided by companies
such as IBM, Microsoft, and others.

A typical UDDI listing for a real estate agent would include the following:

1. Name of Agent.

2. Discovery URL.

3. Contact Information.

4. Search Criteria.

To see samples of these registries, visit the UDDI repositories on the Internet (for more
details, see the IBM site at http://www-3.ibm.com/services/uddi/, or the Microsoft site at
http://uddi.microsoft.com/). These UDDI repositories serve as yellow pages, and communities
can dynamically search these repositories and find services based on the needs of the users.

With UDDI, prospective Web Services providers can identify the businesses they are
considering and catalog what services they can provide. UDDI outlines the mechanisms of
finding and connecting to different real estate services, but it does not define the interactions
that can take place between these Web Services. Thus, Web Services use UDDI in
conjunction with other technologies such as SOAP and WSDL, to define the protocol and
syntax of the transaction.

Message Exchange Using SOAP
SOAP (Simple Object Access Protocol, http://www.w3.org!TR/SOAP~ is an XML-based language
for exchanging messages. It is a mechanism for Web Services to talk to each other over HTTP or
other transport protocols, and it is language independent. A real estate service could use its Visual
Basic application to talk to aj2EE application using SOAP (via XML serialization).

The previous diagram shows that the buyer can send a SOAP message to the FindRealEstate
Agents service to invoke the search for real estate agents. This message needs to contain the
SOAP XML headers (see a developer-oriented paper for how this would look), and the search
criteria of what they are looking for. This could include some selection criteria to rank the
resulting list of agents. Thus, using the SOAP protocol it is possible to integrate the
communications between the different real estate services via a community portal.

Defining Contracts Using WSDL
WSDL (Web Services Description Language, http://www.w3.org!TR/wsdl/) is an XML-based
language used to describe the services provided and methods to access these services.

149

www.manaraa.com

Kunal Mittal

We can, for example, negotiate the contracts between the mortgage companies and the buyer. The
buyer would pass all their financial information and other information needed to have a loan
approved as a SOAP message. How, though, do we find out what information is needed? The list
of information needed by a mortgage company to process a loan application is defined in a WSDL
file. The mortgage company defines the format for the input data, as well as the format and
contents of the data it will return as a result of the loan processing. The Web Services orchestration
platform will know how to interpret the WSDL file between the buyer and mortgage company.

This basic introduction to Web Services technologies demonstrates how real estate services
can be wrapped using Web Services. We will show this using a case study, which should shed
light on how Web Services can be used in a simplified real estate transaction.

Case Study
As an example, we will show how a basic Real Estate Community can be created using Web
Services technologies.

Problem Description
In our example, we try to describe a community site that will manage and orchestrate real
estate transactions using Web Services technologies. We will describe how the following real
estate process can be converted into a collection of Web Services, and orchestrated through a
community site. Our example shows a relatively simple five-step process for buying a house.

Process

1) Preparatory work:
In parallel and asynchronous

a) Get a credit report
(Source: http://www.creditreport.com/)

b) Estimate your buying power
(Source:
http://www.interest.com/calculators~

2) Retrieve a list of real-estate agents based on
location
(city/state or zip), accreditations, etc.
(Source: http://www.realtor.com/)

3) Offer Process (Both steps must take place)

a) Make offer on house (Source: Manual)

150

Notes

Can use UDDI here.

Can use UDDI here.

Can use UDDI here.

This process is manual, as it requires
interaction and negotiation between
the buyer and seller, and is
traditionally mediated by their agents.

www.manaraa.com

Process

b) Offer accepted (Source: Manual)

4) Escrow: Under contract with accepted
offer.
In parallel and asynchronous

a) Get an appraisal
(Source:
http://www.appraisalreferrals.com/)

b) Get an inspection
(Source: http://www.ashi.com/)

c) Apply for a mortgage

Web Services and the Real Estate Industry

Notes

Buyer and seller agents use faxed
offer contracts and manually update
community site for notifications.

Or buyer's agent can have a
recommended list of appraisers.

American Society of Home
Inspectors (or buyer's agent list).

(Source: http://www.lendingtree.com/)
Just like current loan demo app -
several banks make offers, the
customer selects one.

d) Transfer money to mortgage bank
(Source: Manual)

5) Close of escrow!

The buyer must contact their bank
and have the money wired to the
mortgage bank. There is definitely
scope to expand this into a Web
Services offering.

Manual confirmation by lender.

Some of the processes can be carried out in parallel, and asynchronously. This means that the
services can be initiated simultaneously, and one does not need to wait for a reply from one
service before going on to work on the other service:

151

www.manaraa.com

Kunal Mittal

I

f
Buyer : Buyer I : Credit Report I I : MortgageCalc I

I

I Agentlisting I
I I

I
I
I

la. GetCreditReport() :

Credit Good ! I
I
I
I
I
I
I

lb. CalculatE!BuyerPower()
I

I
Buying Power is xx dollars

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

~

I

I
I
I
I
I
I

I
I
I

12. GetAgentlisting() I

~ · i i 'I Agent listing

u
3a make offer() :

~ ·
I I
13b. Offer Accepted(~
I I

I : Offer I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

~~

!
~
I
I
I
I

Step 1 is the pre-processing step. The buyer decides to get a credit report as well as estimate
their buying power. Neither of these activities has any relation to the other, so they can be
done in parallel. The buyer goes to the community site to start these processes. The
community site allows the buyer to get a credit report from one of many credit-reporting
companies. These companies list their services in a UDDI registry. The buyer is also able to
choose from a list of mortgage calculators that provide different levels of functionality.

152

www.manaraa.com

Web Services and the Real Estate Industry

The next step is for the buyer to find an appropriate real estate agent to help them in the
buying process. Realtors list themselves in an UDDI repository and the community site
searches these listings based on some search criteria given by the buyer. This can include
years in profession, number of houses sold in the last year, commission rates, etc. Once the
buyer chooses an agent, the agent helps them find a house. This process is not covered in our
example. The buyer looks at different houses and chooses one. The agent and buyer get
together and make an offer to the seller. This is step 3 of our process. Once the offer is
accepted, we enter a contract mode. This is the beginning of a transaction, and the steps are
highlighted in the following diagram:

f
[}flspecti~ : Buyer Mortgage

I
I I
I I
I

4a. GetAppraisal()
I
I

~ ~~
Value is xx

4b. Getlnspection()

Inspection OK L
+---4 - -1----------l

14c. ApplyMortgage()

Mortgage Approved

4d. TransferMoney()

0

I
I
I
I
I
I
I

I I
ICiose of Mortgage! II

153

www.manaraa.com

Kunal Mittal

Step 4 of the home-buying process is where we need transaction support. Based on the successful
return of the three services (Appraisal, Inspection, and Mortgage), we will either close the deal and
the buyer will have a new house, or the process will be canceled. At each step however, the buyer
is calling a Web Service. For example, in step 4a, the buyer calls an Appraisal Web Service and
then chooses from a list of people who provide appraisal services. They then interact with that
appraisal service. In parallel, they can do the same to order a Home Inspection. These processes
are asynchronous, so we do not need one of them to finish before we start the next. We do,
however, need to define a contract or transaction that says we can only move to step 5 if step 4a
through step 4d succeed. This was not necessarily the case for step 1. Step 1 did not need a
contractual agreement or a transaction. In step 1, we did some tasks in parallel, but they did not
define whether we would do Step 2 or not. They might change some parameters for step 2 (the
buying power would define what sort of a house the buyer could afford).

At any point in this flow, we need to interact with various other services. In a traditional
model, these services are hard coded, or pre-registered with the system. With Web Services,
these services can be discovered dynamically, and seamlessly integrated into the system
without having to do any development. Even if the services have to be pre-registered, the
integration time is almost negligible. Pre-registering the services can help if a service level
agreement (SLA) needs to be negotiated. If it is done manually, it can take days to weeks due
to the laborious interaction between the companies. Most of this, however, can be done
dynamically using WSDL, and thus there would be no time delay in providing new services.

How Can This be Implemented?
Implementing the above flow might seem like a lot of work. Assuming that the underlying
applications exist at each of the service providers, creating the Web Services wrappers to
these applications is a matter of a few hours. Various companies provide tools for the creation
and deployment of Web Services; the following table lists some of those companies:

154

Vendors

BEA

IBM

Sun

Microsoft

Collaxa

Apache

Cape Clear

Tool Description

Web Services support built into the W ebLogic Application Server. BEA
W ebLogic Workshop (a.k.a. Cajun) is a graphical tool to create Web Services.

Web Services support built into W ebSphere Application Server.

Web Services developers pack released to support creation and
deployment of Web Services.

Microsoft .NET provides a visual platform for the creation and
deployment of Web Services.

The Collaxa Web Services Orchestration Server allows you to easily
create, test, deploy, and orchestrate Web Services.

Apache SOAP and AXIS are two open-source Web Services projects.

CapeConnect 3.5 provides an easy-to-useJ2EE-based Web Services toolkit.

www.manaraa.com

Web Services and the Real Estate Industry

Collaxa has a full working example of this case study (for more details, see
http://www.collaxa.com/dispatch.jsp?ref=wsa_app_source). Interfaces to various Web
portals and services are implemented with XML Web Services leveraging the Collaxa Web
Service Orchestration Server™. Full sourcecode for this example is available from the Collaxa
site. Note: This paper does not intend to recommend one product over the other, and merely
uses the Collaxa product as a way of showing a real example.

Conclusion
Web Services will be the next revolution in the real estate B2B and B2C application space. In
order to remain competitive, real estate businesses and portals must develop Web Services
interfaces to their applications. Using these emerging standards, the total time and complexity
to complete a real estate transaction can be decreased considerably with minimal integration
costs. Real estate firms need to understand their existing applications and identify the
functionality that needs to be exposed as part of their Web Services offerings. The use of
standards such as XML, HTTP, and SOAP allow for easy integration with other services.

Implementing Web Services does not require huge amounts of financial or time commitment.
Many vendors, as described in this paper, provide software tools to support the creation and
deployment of Web Services. Ramp-up time for developers to learn these technologies is
minimal as these tools do most of the grunt work for you. It should only take a matter of hours
or days for companies to wrap their existing service offerings as Web Services.

The resulting integrated systems will allow the end-customer, a person trying to buy or sell a
house, to be shielded from all the complexity of interacting with the various entities involved
in this complex transaction.

155

www.manaraa.com

Author: David O'Riordan

• 828 and EAI Processes

• ebXML 8PSS

• XLANG

•

www.manaraa.com

Business Process Standards
For Web Services

The convergence of two major trends is creating a rapidly growing demand for a new breed of
software that facilitates automation of business processes both between enterprises and within
the enterprise.

The first of these trends is Web Services technology: a collection of XML-based standards that
provide a means for passing information between applications using XML documents. The
ability of Web Services to reach beyond the firewall, the loose coupling between applications
encouraged by Web Service interfaces, and the wide support for core Web Service standards
by major enterprise software vendors are the key reasons why Web Services technology
promises to make integration of applications both within the enterprise and between different
enterprises significantly easier and cheaper than before. Loose coupling means that not only
can applications be implemented on different platforms and operating systems, but also that
the implementations can readily be changed without affecting the interfaces.

The second of these trends is a business driver. In order to increase an organization's agility in
responding to customer, market, and strategic requirements, the information flow between the
IT systems that carry out these business operations must be streamlined. This includes not
only the organization's own IT systems but also those of its partners. It is the task of electronic
business integration to automate this information flow as much as possible in order to
streamline operations. Historically, organizations have generally focused on integrating their
own IT systems.

www.manaraa.com

David O'Riordan

If, however, the information flow between the organization's own IT systems and those of its
partners (particularly in the supply chain) is not also streamlined, then the overall agility of
the business is still restricted. Therefore, many enterprises also strive to integrate their
partner's IT systems with their own in order to more fully automate critical business processes
such as sales, procurement, and research and development. The benefits of the increased
agility resulting from business process automation are extensive. For example, operational
costs are decreased, inventories are reduced, customer satisfaction is increased, and products
are brought to market faster.

A whole new set of tools has arisen to facilitate the integration and automation of business
processes. These include graphical process modeling tools, middleware technologies such as
CORBA andJMS, integration brokers, Business Process Management Systems (BPMS), and
B2B servers. Unfortunately, until recently the investment required by organizations to
integrate the IT systems both inside their organization and across the firewall has been very
high. This is mainly because the different proprietary interfaces and data formats used by each
application have meant that integration projects have had to invest considerable resources in
expensive integration tools as well as in the time and expertise to perform the integration.

Web Services technology promises to change this by replacing proprietary interfaces and data
formats with low-cost, ubiquitously supported standards for interfaces and data that work as
well across the firewall as within it. The first generation of Web Services technology, though,
has largely focused on the messaging foundation supported by SOAP and WSDL. While this
foundation is sufficient for some internal application integration needs, it is not sufficient to
support the complete automation of critical business processes. This requires the ability to
specify workflow, security requirements, transaction management, and other critical
information related to the business process context. Such information is generally specified in
a business process model.

The Need for Business Process Standards
We require standards for business process models that are built on Web Service architectures.
These would enable processes to be modeled, deployed, executed, and managed by software
from various vendors. Without such standards, a number of undesirable consequences arise.
These include:

158

0 Vendors are likely to offer support for such features as proprietary extensions to Web
Service standards, leading to vendor lock-in.

o Collaborating enterprises may choose incompatible means of defining the shared
process models, leading to inefficiencies and error-prone operations.

0 Reuse of proven processes and patterns across products from different vendors is
difficult if these can't be specified in a standard way.

0 The emergence of best-of-breed tools for modeling and for execution of processes
will be hampered.

www.manaraa.com

Business Process Standards For Web Services

B2B and EAI Processes
Business processes can be divided into two distinct but converging domains:

0 Public processes are those that an enterprise shares with its customers, suppliers, or
other partners. This is the business-to-business integration (B2Bi) domain.

o Private processes are those that are internal to the enterprise. This is the enterprise
application integration (EAI) domain.

Solutions for these two domains share many common characteristics. For example XML
document exchange between applications is used in both the EAI and B2B domains for
loosely coupled integration of applications. Additionally, in any enterprise, public and private
business processes combine to perform the overall operations of the business. These facts
drive the demand for a single business process standard that encompasses both the B2B and
EAI domains.

There are, however, some important differences between the domains. For example, stricter
legal and security requirements will apply to public processes. On the other hand private
process models stipulate execution details that are not present in public process models, such
as how a purchase order is actually processed by various enterprise applications.

Business Process Features
A business process standard that provides comprehensive support for both public and private
processes should consider the following features:

o Collaboration-Based Process Models
Experience in both EAI and B2B process modeling has led to the increasing
adoption of collaboration-based process models, usually based on UML. In
collaboration-based process models, processes are described as a set of collaborations
between various participants, including organizations, applications, employees, and
other business processes. Usually participants can be abstracted in model
descriptions using roles. The ability to recursively decompose process models is
generally required.

o Workflow
The workflow defines how the participants in a process work together to execute a
process from start to finish, and is also called choreography or orchestration. Most
workflow standards support subprocesses, which allow activities within a workflow to
be implemented as another workflow. Workflow descriptions can be generated from
collaboration models, or specified independently. Recursively decomposed process
models can be mapped to workflow descriptions using subprocesses.

159

www.manaraa.com

David O'Riordan

160

There are two complementary parts to workflow: the control flow and the data flow.
The control flow defines the sequencing of different activities in the process. The
data flow defines how information flows between activities.

CJ Transaction Management
Transactions are crucial building blocks of any business process and a
comprehensive business process standard must provide a means for specifying how
transactions are managed. Long-running transactions that may take hours or weeks to
complete must be supported. If an enclosing transaction fails after an enclosed
transaction is completed, some compensating actions may be needed. For example if
a hotel reservation is canceled after a payment has been authorized, a compensating
action may be required to cancel the payment. Time constraints for receiving
responses or acknowledgements may also be required.

CJ Exception Handling
If an exception is raised during the course of a business process, then it is important
that the model allow appropriate recovery actions to be taken.

CJ Service Interfaces
Web Services provide a basis for passing messages between participants in
collaboration-based processes. Some recently proposed business process standards
such as WSFL and XLANG use WSDL interfaces to describe the loosely coupled
services exposed by participants.

CJ Message Security and Reliability
For mission-critical processes, reliable and secure message delivery is required.
Additionally, B2B messages may need to be digitally signed and authenticated. These
quality-of-service semantics may vary for different transactions.

CJ Audit Trail
It is generally very important for legal purposes in B2B processes that an audit trail
of certain business transactions is kept. This means that a trading partner is unable to
claim that a transaction was not accepted when in fact it was; that is, it ensures non
repudiation of the transaction by the partner. Digitally signed receipt
acknowledgements of messages may be demanded.

CJ Agreements
The notion of agreements is specifically for B2B processes. An agreement represents
a contract between two or more partners to carry out specific functions (identified by
roles) in a public business process.

CJ Execution
Public processes describe only how information should flow between organizations.
In order to be able to fully automate the execution of the business process within an
organization, the complete information flow within that organization as well as across
its firewalls must be specified. This requires the process models to fully describe the
private as well as the public activities of the organization.

www.manaraa.com

Business Process Standards For Web Services

A powerful approach supported by some standards is Web Service aggregation,
whereby one Web Service is used in the implementation of another. For example an
organizational workflow that handles purchase orders might receive the orders from
customers via one Web Service and then call an internal ERP application via another
Web Service to help process the order. Such an approach should become
significantly less expensive than traditional EAI methods.

The Web Services Stack
In order to describe how Web Service standards relate to the above features, it is useful to
begin by looking at a representative Web Services architecture.

Web Services architecture is built from layers of technology and standards on which services
can be implemented and deployed. Each layer on this Web Services stack depends on the
layers below it. There are many variations of this architecture, but each variation generally
includes the features described in the previous section in addition to the basic messaging and
service description foundation layers.

The following diagram illustrates a generic Web Services architecture, and how it maps to
specific architectures from prominent organizations or companies. The next section examines
some of the business process specifications in more detail:

Agreements CPA TPA ???

BPML

Orchestration

G
WSFL X LANG

Quality of Service I WSEL ???

Service WSDL WSDL

SOAP SOAP
Packaging/ MSH O.SIG WS-Routlng
Transport (over SOAP) HITP·R ws-security

Generic Stack ebXML IBM Microsoft BPMI

In this generic architecture we have the following layers:

0 Packaging/Transport
This enables information to be packaged into messages and transported reliably and
securely between participants. It is sometimes just called the messaging layer.

o Service
This layer describes the operational interfaces of a Web Service.

161

www.manaraa.com

David O'Riordan

o Quality Of Service
This layer describes non-operational aspects of services, including reliability and
security characteristics.

o Orchestration
This layer describes how services interact with each other in business processes using
workflow descriptions. This layer is also sometimes referred to as the choreography
layer.

o Agreements
This layer describes how specific trading partners will collaborate to perform some
shared business process.

This generic architecture is of course a highly simplified representation. It omits some
important elements that are not the focus of this article, for example service discovery.

It should be noted that BPMI deliberately only defines the process layer, as it is intended that
BPML process models can bind to complementary standards from other stacks (see BMPL for
more details) .

The Candidates
Now let's examine those specifications that address the orchestration layer of the Web
Services stack, the core layer that describes business process semantics. These are ebXML
BPSS, XLANG, WSFL, and BPML. Each supports some subset of the aforementioned
features, depending largely on the domain they are addressing.

ebXML BPSS
ebXML BPSS (Business Process Specification Schema) is part of the comprehensive ebXML
B2B suite of specifications, which also includes core specifications for reliable and secure
messaging based on SOAP, collaboration agreements and profiles, a registry/repository, and
core components.

BPSS is a relatively simple but effective schema that describes public processes only. In a
BPSS model different roles (seller, buyer, etc.) collaborate to carry out a set of transactions.
The orchestration of the transactions is defined using a control flow based on UML activity
graph semantics. There is no explicit support for describing how data flows between
transactions.

The transaction part of the model is based on a proven, robust model for long-lived e
commerce business transactions used by previous B2B standards such as RosettaN et. There is
explicit support for specifying quality-of-service semantics for transactions such as
authentication, acknowledgements, non-repudiation, and timeouts:

162

www.manaraa.com

Feature

Collaboration
Based Modeling

Workflow

Transaction
Management

Exception Handling

Business Process Standards For Web Services

Support

BPSS describes public processes as collaborations between
roles, with each role abstractly representing a trading partner.
There are two types of collaborations: binary collaborations
between two roles, and multi-party collaborations between
three or more roles. Multi-party collaborations are decomposed
to binary collaborations. Recursive decomposition is further
supported through nesting binary collaborations inside other
binary collaborations, making for a flexible solution.

BPSS workflow is described by assigning a public control flow
based on UML activity graph semantics to each binary
collaboration. The control flow describes the sequencing of
business transactions between the two roles. The control flow
can specify sequential, parallel, and conditional execution of
business transactions. There is also a limited facility for
describing control flow across multi-party collaborations.

BPSS supports a long-running business transaction model based
on robust, proven e-commerce transaction patterns used by
previous standards such as RosettaN et. A business transaction
consists of a request and optionally a response. Each request or
response may require that a receipt acknowledgement be
returned to the sender. Additionally for contract-forming
transactions such as purchase order requests, an acceptance
acknowledgement may need to be returned to the requester.
Time constraints can be applied to the return of responses and
acknowledgements. If a business transaction fails on either side,
the other side is notified so that both sides can carry out any
actions necessary to process the failure in their internal systems.
Transactions are not nested and there is no support for
specifying compensating transactions.

BPSS defines a number of possible exceptions and prescribes
how these are communicated and how they affect the state of
the transaction. They generally cause the transaction to fail.
Transitions exiting from a transaction can be enabled based on
whether the transaction failed or succeeded. For example if a
quote request transaction fails, a procurement process might
transition to completion, whereas if it succeeds the process
might transition to a purchase order transaction.

Table continued on following page

163

www.manaraa.com

David O'Riordan

Feature

Service Interfaces

Message Security
And Reliability

Audit Trail

Agreements

Execution

Support

BPSS process models implicitly contain service interface
descriptions for each role. The service interfaces support specific
asynchronous request and response operations, each with a
defined message content. That content can consist of any number
of specified XML document types and MIME attachments. The
service interface also implicitly supports generic
acknowledgement and exception messages. Organizations can
advertise their support for particular roles {service interfaces) in
ebXML collaboration profiles and agreements, which include the
location of the services.

WSDL descriptions of the service interfaces for each role could be
readily generated although there is no standard mapping at this time.

BPSS assumes that processes will use reliable and secure
messaging services such as the ebXML messaging service. For
each request or response, it can be stipulated that the identity of
the originator must be checked for authorization purposes. For
document security, it can be stipulated whether each document
or attachment in a request or response must be encrypted,
whether it must contain a message digest to prevent tampering,
and whether a digital certificate is required. For each transaction
it is possible to specify whether guaranteed delivery of messages
is required. Default settings for these properties can be specified
as attributes of transactions in a BPSS model, and these defaults
can then be overridden in a CPA (collaboration protocol
agreement) between two partners.

For each request or response, it can be stipulated that the sender
must save a copy of the message contents. Additionally it can be
stipulated that a digitally signed receipt acknowledgement must be
returned to the sender, who then saves it. This provides a high
degree of non-repudiation of transactions. Default settings for these
properties can be specified as attributes of transactions in a BPSS
model, and these defaults can then be overridden in a CPA
between two partners.

A BPSS process model can be referenced in an ebXML CPA. This
provides details on which trading partner supports which role in a
specified process model in the context of some business agreement.

As a public process schema, BPSS provides no support for
internal execution semantics.

See also http://www.ebxml.org/specs/ebBPSS.pdf.

164

www.manaraa.com

Business Process Standards For Web Services

X LANG
XLANG is Microsoft's proposal in this space, and like BPSS is currently focused entirely on
public processes.

XLANG uses WSDL to describe the service interfaces of each participant. The behavior is
specified with a control flow that choreographs the WSDL operations. There is no means for
specifying data flow between operations. Long-running transactions encompassing multiple
operations are supported and can be nested. Compensating operations for transactions can be
specified. Exceptions can be caught and recovery operations specified. Acknowledgements and
timeouts can be flexibly incorporated. Some support for agreements is provided in XLANG by
contracts, which defines how to stitch together Web Services of collaborating partners.

XLANG does not define quality-of-service characteristics of Web Services such as non
repudiation and authentication, or guaranteed messaging requirements.

Feature

Collaboration-Based
Modeling

Workflow

Transaction
Management

Support

XLANG describes processes as interactions between Web
Service providers so collaboration-based process modeling
tools are possible. The block-structured control flow
descriptions of XLANG are more suitable for generation
from flow-chart tools than UML tools, but the latter is
possible. Recursive decomposition of XLANG processes is
facilitated by actions that are implemented by subprocesses.

In XLANG the workflow associated with each Web Service
is defined by an XML <behavior> element. This defines a
control flow based on a block-structured approach. The
control flow supports sequential, parallel, and conditional
actions. Actions can include WSDL operations, timed waits,
and the raising of exceptions. There is no support for
specifying data flow between actions.

XLANG provides a flexible and comprehensive long
running transaction model. Transactions are scoped by
context blocks, within which any number of actions can be
defined. Transactions can be nested to any level.
Compensating blocks can be associated with each transaction
context. If a fault occurs in a transaction then the
compensating actions of all nested transactions that have
completed will usually need to be executed. XLANG allows
flexible specification of the order in which such actions will
be executed, but the default is reverse order.

Table continued on following page

165

www.manaraa.com

David O'Riordan

Feature

Exception Handling

Service Interfaces

Message Security And
Reliability

Audit Trail

Agreements

Execution

Support

XLANG provides flexible exception-handling facilities.
Exception handlers can be specified for any block of actions,
and explicit recovery actions specified including the
compensating blocks of specified transactions. Exceptions
can also be raised at any point in the control flow.

XLANG uses WSDL to describe the service interfaces for
each participating Web Service.

There is no support for security and reliability semantics in
XLANG.

There is no support for non-repudiation semantics in
XLANG.

XLANG supports the notion of business process contracts,
which could provide the foundation for business agreements.
These specify how two or more XLANG-enabled Web
Services are stitched together to describe a shared process
between particular participants.

XLANG is focused on public processes and omits some
details required to automate execution of a process, for
example data flow constructs.

The following diagram illustrates a sample three-party contract in XLANG:

0

Behavior
Operation Map

Buyer Seller Shipper

See also http://www .gotdotnet.com/team/xm I_ wssspecs/xlang-c/defau lt. htm.

166

www.manaraa.com

Business Process Standards For Web Services

WSFL
WSFL (Web Services Flow Language) is IBM's proposal in this area. It covers both public and
private processes. WSFL is primarily focused on describing Web Service compositions, and
like XLANG uses WSDL to describe the service interfaces.

A flow model describes the workflow for a process. Both control flow and data flow can be defined
using a state-transition model. Transactions and exception handling are not explicitly supported,
but some of the semantics can be implemented using conditional transitions. Activities in a
workflow can be exported as Web Service operations, and activities can also be implemented by
delegation to a Web Service. In this way WSFL supports Web Service aggregation.

A global model defines how the various Web Services are linked together in the process. It is
similar therefore to the business process contracts of XLANG.

Quality-of-service characteristics are delegated to a separate specification called WSEL (Web
Services Endpoint Language).

Feature

Collaboration-Based
Modeling

Workflow

Transaction
Management

Support

WSFL describes processes as interactions between Web
Service providers, which can be abstracted using roles so
collaboration-based process modeling tools could certainly be
used to generate WSFL descriptions. Recursive
decomposition of WSFL processes is facilitated because
WSFL flow models can be exposed as Web Services, which
in turn can be used in the implementation of activities in
other flow models.

In WSFL, a flow model defines the workflow associated with
each service provider (collaboration role). This defines both a
control flow and a data model. The control flow is based on
transitions between activities. Transitions can specify XP ATH
conditions on particular messages that enable or disable
them, thus directing the process flow to different activities
depending on the content of the messages. Data flows can
extract data from different activities using XP A TH
expressions, transform them using XSLT, and aggregate them
for input into other activities.

WSFL doesn't support transactions. Transactional
characteristics of Web Services are being addressed in
another IBM project (WSTx), which might end up
contributing to the complementary WSEL specification. See
http://www.research.ibm.com/AEM/wstx.html for more
details on WSTx.

Table continued on following page

167

www.manaraa.com

David O'Riordan

Feature

Exception Handling

Service Interfaces

Message Security And
Reliability

Audit Trail

Agreements

Execution

Support

WSFL can support handling different exceptions that are
indicated in the content of messages by specifying transition
conditions that examine the message for these exceptions. In
this way the process flow can be directed to different
activities for different exceptions.

WSFL explicitly uses WSDL to describe the service interfaces
for each participating Web Service.

There is no support for security and reliability semantics in
WSFL. This is delegated to the separate WSEL specification.

There is no support for non-repudiation semantics in WSFL.
This is delegated to the separate WSEL specification.

In the IBM Web Services stack, agreements are a separate
component (TPA) but WSFL global models give a foundation
that could be used for business agreements.

WSFL provides execution capabilities for activities through
Web Service invocations or throughjava, CICS, or
EXE/CMD-based implementation.

See also http:/ /www-4. ibm .com/software/solutions/webservices/pdf/WS FL. pdf.

BPML
BPML (Business Process Management Language) is a specification from the BPMI.org
(Business Process Management Initiative) organization. BPML aims to provide a
comprehensive means of specifying the processes of an enterprise. It is positioned as
complementary to public process standards such as ebXML BPSS - the BPMI F AQ (from the
BPMI.org web site, http://www.bpmi.org/faq.esp) states:

"What is the relationship between BPMI.org and ebXML?
BPMI.org and ebXML are addressing complementary aspects of e-Business process
management. While ebXML provides a standard way to describe the Public Interface of e
Business processes, BPMI.org provides a standard way to describe their Private
Implementation."

BPML describes comprehensive control flow and data flow constructs. It supports both short
and long-running transactions with compensating activities. It also supports exception
handling and timeouts. It does not provide a means to specify characteristics that are
important to B2B processes, such as authentication and non-repudiation.

168

www.manaraa.com

Feature

Collaboration
Based
Modeling

Workflow

Transaction
Management

Exception
Handling

Service
Interfaces

Business Process Standards For Web Services

Support

BPML describes processes as XML message exchanges between
participants. Participants can be abstracted using roles and can represent
organizations, applications, employees, or other processes. Participants
can be assigned statically or determined dynamically at runtime. In
essence the private process represented by a BPML process interacts
with participants through a set of collaborations. Such descriptions are
amenable to generation from collaboration modeling tools.

Recursive decomposition is supported through nested processes.

BPML provides comprehensive control and data flow support. A
process consists of a simple or a complex activity. Simple activities
include sending or receiving an XML message, invoking a Web
Service operation, or raising an exception. Complex activities include
block-structured control flow constructs for sequential, parallel, and
conditional execution of other simple or complex activities. Activities
can be scheduled to start at a future date, and time constraints can be
assigned to the duration of the activity. Data flow between activities is
accomplished by assigning data from messages to state variables and
vice-versa. Rule sets express complex conditions based on XPATH
expressions that can be used to filter input messages to activities.

BPML provides comprehensive support for both ACID (coordinated)
and long-running (extended) transactions. A transaction can be
associated with any complex activity. This implies that transactions can
be nested. Compensating activities can be associated with both
coordinated and extended transactions. If a transaction is aborted, any
compensating activities within the same context will be executed in
reverse order.

The exception-handling capabilities supported by BPML are robust
and quite similar to XLANG. Exceptions are propagated upwards to
enclosing activities until caught. If not handled within a transaction,
the transaction is aborted.

The service interfaces exposed by participants in collaborations can
be described in BPML using abstract processes. An abstract process
need not fully specify how the participant implements the process,
but does specify aspects of their behavior relevant to the overall
process model. Thus BPML abstract processes are analogous to
descriptions of participant behavior in purely public process models
such as ebXML or XLANG. Conceivably, mappings could be
performed between these standards and BPML abstract processes.
The service interface part of abstract processes is very similar to
WSDL so that part of a mapping should be quite straightforward.

Table continued on following page

169

www.manaraa.com

David O'Riordan

Feature

Message
Security And
Reliability

Audit Trail

Agreements

Execution

Support

There is no support for security and reliability semantics in BPML.

There is no support for non-repudiation semantics in BPML.

There is no support for agreements in BPML.

Participants in BPML processes can represent IT systems,
applications, or users within an organization, or external service
providers. Thus, by exchanging messages with these participants the
detailed implementation steps of a process can be specified. BPML
does not specify all details for binding such participants, for example
messaging transports or application programming interface bindings.
Such details are left to vendors.

If legacy applications are already exposed as WSD L Web Services,
then they can be incorporated as participants in BPML processes by
vendor tools that map the WSDL interfaces to BPML abstract
processes and route the messages at run-time using SOAP. Such
processes would then look very similar to the Web Service
composition approach facilitated by WSFL. It is conceivable that
such an approach could be standardized in a future version of BPML.

See also http://www.bpmi.org/.

Convergence
As outlined above, the business drivers point to a convergence of private and public
business process model standards based on Web Services. How might this convergence
occur in practice?

It seems likely that both ebXML BPSS and BPML will remain focused on their
complementary domains for the time being, which are the B2B and EAI domains respectively.

On the other hand, Microsoft and IBM are clearly moving towards a set of specifications that
would address both B2B and EAI requirements. It has been widely speculated that they will
collaborate to produce a single proposal or set of proposals in this space that could then be
submitted to the W3C for inclusion in its Web Services architecture stack in the process layer.

170

www.manaraa.com

Business Process Standards For Web Services

There are, however, significant obstacles to be overcome for this to happen. Technical
obstacles include the different approaches to control flow modeling (in XLANG control flow
is described using a block-structured approach best represented graphically using flow charts,
while WSFL uses a state-transition approach best represented graphically using UML activity
or state graphs). This is not just an argument about the technical merits of the respective
approaches - both vendors have significant investments in these technologies in their
respective product lines (WebSphere from IBM and BizTalk from Microsoft).

Given these obstacles and the time it takes for any new proposal to become widely supported
in products and in the marketplace, the widespread adoption of a single Web Services-based
standard for B2B and EAI processes is some time away.

Although the standards convergence process is ongoing, this does not necessarily mean that
enterprises should wait before adopting one or more of these standards. The potential return
on investment from automating business processes means that it might be quite costly for
enterprises to wait until the standardization process has settled before adopting business
process modeling and automation tools. The best way to protect investment in such tools is to
ensure that the vendors are committed to a standards-based approach. For the moment an
enterprise should focus on the standards that best support the domain that it is most urgently
seeking to automate. If seeking to integrate public and private processes, an approach based
on using complementary existing standards should be considered.

OMG EDOC
At this point it is worth mentioning another relevant emerging standard that applies to the
modeling of business processes for Web Services. This is the EDOC (Extended Distributed
Object Computing) standard from the OMG (Object Management Group,
http://www.omg.org/).

EDOC essentially defines a modeling framework that supports the OMG MDA (model-driven
architecture). It aims to support collaborations between loosely coupled systems in both the B2B
and EAI domain, and to enable the reuse of business components from different distributed
object technologies in these collaborations, such as CORBA, EJB, and Web Services.

EDOC is based on UML and defines several complementary subprofiles, including a
Component Collaboration Architecture. This profile defines the core concepts that can be
used to describe collaboration-based process models. Such models could be mapped to the
different business process standards described above that are then used to drive the execution
of the collaborations. Thus EDOC is clearly complementary to these standards.

171

www.manaraa.com

David O'Riordan

Conclusion
It is clear that businesses are increasingly moving towards comprehensive automation and
integration of their private and public processes, and that Web Services is becoming
increasingly popular for use as the integration infrastructure. This scenario drives the demand
for Web Services-based business process standards. Over the next couple of years we can
expect to see continuing activity to address this demand.

172

www.manaraa.com

Business Process Standards For Web Services

173

www.manaraa.com

Authors: Gunjan Samtani and Dimple Sadhwani

• STP Critical Parameters

• Web Services for STP

• Web Services Example

• Advantages

Where to Start

www.manaraa.com

Web Services and Straight
Through Processing (STP)

This paper discusses the fundamentals of STP, the need for, driving forces behind, and
benefits of STP, the current state of technology supporting STP, and the relationship of
enterprise and business-to-business application integration and business process management
with STP. It also looks at the critical parameters for the success of STP, presents an
introduction to Web Services including its participants and operations, and examines the
application of SOA-based framework to STP. There is a detailed discussion on the usage of
Web Services for STP, and an example of the usage of Web Services for a real-world STP
related matching utility for mortgage and government-backed fixed income instruments.

We would like to bring to the reader's attention the fact that STP is as much about business
issues as it is about technology. In this paper, we have tried to keep a balance between these
two different, yet interlinked, subjects as they relate to STP. It is worth mentioning that the
readership of this article includes senior management (technical and business), business
analysts, systems architects, project managers and software developers. Thus, our aim has
been to keep a higher-level view of both business and technology issues, making the article
useful and worthwhile for each one of you.

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

What Is Straight Through Processing { STP)?
Straight Through Processing (STP), a solution that automates the end-to-end processing of
transactions for all financial instruments from initiation to resolution, is set to revolutionize
the financial industry. STP will streamline back office activities, leading to reduced failures,
lower risks, and significantly lower costs per transaction. It encompasses a set of applications,
business processes, and standards that will redefine the settlement and processing paradigm
within the capital markets industry.

STP has the same significance to the financial industry as Supply Chain Management (SCM)
has to the manufacturing industry and Customer Relationship Management (CRM) has to the
service industry.

The Need for STP
Although the financial industry has reduced its T +5 trading cycle (settlement 5 days after the
actual trade has been done) to T +3, it has been a real laggard in any kind of business process
management and technological advancement as far as trade settlement and processing are
concerned. Decades old, manual, and redundant operational processes are still in place
without any sort of automation.

As an example, the following diagram shows the current manual process utilized for
derivatives trading. As depicted, there are multiple points within the business process where
human intervention is required. Further, the flow and format of data from one system to the
other (such as from the Trade Pricing System to the Settlement System) occurs in non
standard proprietary format, even within the company. The issue of non-standard formats is
multiplied when communicating with external trading partners, as each company may use a
different format:

176

www.manaraa.com

Web Services and Straight Through Processing (STP)

Trade Pricing
System

Risk Management
System

Confirmation
System

Settlement
System

Collateral
Management

System

"

~ "

Middle Office Middle Office

" "

Settlement

• Collateral •
~ Matching ~

1\4 t.''
The Drivers and Benefits of STP

Trade Pricing
System

Risk Management
System

Confirmation
System

Settlement
System

Collateral
Management

System

There are multiple drivers that are literally forcing the entire industry to bite the bullet of STP
once and for all. Some of these key driving forces include pricing and competitive
compulsions, higher trade volume growth of approximately 31.6% compounded annually
year-over-year, competition from international markets, increased end-user (investor)
expectations of service quality, and last but not least the need for greater process efficiency. At
the end of the day, it will not be a financial company's prerogative to implement STP, it will
be a regulatory requirement - which effectively means that if you want to remain in business
you better start working towards the implementation of STP.

177

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

These driving forces are also STP's key benefits, as follows:

o Better electronic connectivity among different entities involved in the trading cycle.

0 Integration of front, middle, and back office applications based on standards.

0 Elimination of a lot of manual activities and redundant processes in the end-to-end
processing of trade transactions.

0 Higher accuracy of trade execution and settlement.

0 Reduced operational costs.

o Shortened trade cycle.

The Current State of Technology Supporting STP
One word that can describe the current state within financial organizations as far as STP is
concerned: confusion. In a recent conference on STP (16'h January 2002), more than half
of the financial companies present confessed that they are yet to begin work for STP -
mainly due to lack of clarity as where to start, what to do, what to change, and which
technology to use.

STP, which was introduced more than a decade ago, still remains point-to-point and is
characterized by hard-coded proprietary interfaces. In its current state of implementation
within pretty much every financial institution STP, still limited in scope, targets only a portion
of underlying financial instruments and lines of products and businesses, and requires a full
development cycle for each addition of a product into the STP world. The primary reason for
this state of affairs is the lack of an industry-wide initiative to automate and standardize the
business processes and force each financial institution to change their trading and settlement
systems accordingly.

STP Encompasses EAI and B2Bi
Straight Through Processing encompasses both enterprise application integration (EAI) and
business-to-business application integration (B2Bi). EAI for STP, also known as internal STP,
relates to the trade and settlement processes that are internal to an industry participant (see
the following diagram). For example, in the case of a fixed income dealer it would include
placing the trade through the trading system, authorizing its execution, and receiving details
of executions as they are communicated through the exchange or clearing corporation and
allocation process.

178

www.manaraa.com

Web Services and Straight Through Processing (STP)

Application Servers
(.NET, J2EE ..)

On the other hand, B2Bi for STP, also known as external STP, is about connecting
seamlessly to all external partners in the trading and settlement process, including the
industry-matching utilities such as GSCC's RTTM (Government Securities Clearing
Corporation's Real-time Trade Matching) and Omgeo. The external partners include
custodians, exchanges, clearing corporations, central security depositories, and other
information providers:

lnstltutiona I
Investors

Insurance
Companies

Exchange

Information
Providers

•

., /
Brokers;
Dealers

+------. Custodians

Large Financial
Institution

I \
Private

Markets
Cleaning

Corporations

Banks

179

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

STP Involves Business Process Management {BPM)
Business process management (BPM) for STP would enable financial enterprises to automate
and integrate the disparate internal and external corporate business processes. It will do so by
supporting dynamic process topologies, which allow the boundary between processes and
participants to be determined, either statically or dynamically on a real-time basis.
Furthermore, its implementation will provide every financial corporation with the opportunity
to redefine and automate core business processes, which would result in streamlined business
operations and reduced costs.

BPM for internal STP would enable companies to achieve internal systems that are truly
integrated using automated workflows. The business processes that control information flow
by coordinating interactions with business applications and systems within an organization,
are called private or closed STP processes:

180

Front Office
Application

Closed Business
Process

I I~ I I B
l...U....-

lL

11
Back Office
Application

Middle Office
Application

www.manaraa.com

Web Services and Straight Through Processing (STP)

BPM for external STP would focus on how financial institutions, as a vertical industry, can
refine their business processes so that the applications supporting them can be seamlessly
integrated across the enterprise. With effective BPM for external STP, financial institutions
can become part of a unified business process flow. This would allow the dynamic sharing of
trade state information among trading partners, through which all communication can be
tracked and recorded. Since STP transactions can span several days, unified workflows
become critical in ensuring the completion of automated business transactions. The external
business processes that control interactions among independent financial institutions are
called public or open STP processes:

Critical Parameters of STP

lL
Clearing

Corporation

The critical parameters of STP that determine its success or failure across the entire industry are:

0 Speed.

0 Accuracy.

181

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

D Stable infrastructure.

D Extensible infrastructure.

D Standardization.

D Security.

Speed of Trade Information
In order to achieve STP, the trade information has to be passed between the buying entity,
selling entity, exchanges, depository participants, and any other entity involved in the trade
processing on a real-time basis at fast speeds. No longer can financial companies have batch
programs running overnight transferring and sharing trade-related data among different entities.

Accuracy of Trade Information
Accuracy of trade information is more critical than the speed. To achieve accuracy, the format
in which trade data is shared has to be based on standards rather than proprietary formats.
Using standards allows accurate information transfer between new trading partners much
quicker than if proprietary systems were in use. This parameter also highlights the importance of
testing that will be required once new standards are introduced to represent business processes.

Stable Infrastructure
The technology infrastructure supporting STP, which would span multiple networks,
applications, and platforms, has to be stable and provide for the fast and accurate processing
of complex transactions.

Extensible Infrastructure
The technology infrastructure supporting STP should be extensible for tomorrow's needs.
Using this infrastructure, it should be relatively easy and cheap to take the opportunities of
tomorrow to mass-customize both financial and non-financial products and services.

Standardization of Business Processes
It is only through the standardization of business processes that key requirements of STP -
automation and common processing platforms - can be achieved. Without standardization,
companies will not be able to employ reusable solutions across business applications for either
EAI or B2Bi.

The standardization of business processes would help in achieving greater business process
efficiency, transparency, and control. Let's discuss in detail each of these factors; later in the
paper we will discuss how Web Services make BPM easier with all these factors included.

182

D Efficiency: STP in itself eliminates the need for manually re-entering any trade
related data, provides intelligence for validating information, and purges risks from
all the processes and subprocesses involved in a transaction life cycle.

www.manaraa.com

Web Services and Straight Through Processing (STP)

o Transparency: Business process transparency is an extremely important requirement
of STP. At any stage of the trade cycle and at any time, any entity (if entitled) should
be able to determine the state of the transaction. For example, if a trade has not
executed after being submitted to the exchange, the buying trader should be able to
determine the reason in real time. This may be achieved in many ways, including
passing a message (based on industry standards) from the exchange to the buying
trader informing them of the failed execution of the trade along with the reason. This
message can be propagated from the back office systems right to the front office
system into the traders' workstation.

o Control: It is imperative for STP that the control of business processes is automated as
much as possible. There may still be instances where human involvement is necessary,
especially in the case of exceptions. It should, however, be fairly easy to add any
workflow logic by simply adding on to the layer of the business process control.

Security

Secured interoperability holds the key for STP to become a successful initiative. The security
requirements for internal STP are almost a subset of those for external STP. External STP
involves significant security risks as it involves the use of the Internet or VPNs, which
mandates two levels of security. Firstly, external STP necessitates opening up corporate
firewalls to enable cross-boundary communication between enterprises. Thus, financial
companies have to secure their internal network against malicious attacks through these open
ports. Secondly, the data transmitted over the Internet or any other mode has to be secured.
The data may contain classified information, such as corporate information, trade information,
settlement information, and thus cannot be left unguarded.

Application of Service-Oriented Architecture {SOA)
based Framework to STP

The financial institutions have to use a solution that provides an STP operations model with
high-performance technology to enable the seamless transmission and execution of trades
along with high-performance, reliable, extensible, scalable, and open standards-based
communication and messaging. The key requirements of an STP solution include:

0 High availability and scalability to be able to support increased trade volume.

o High security as the data exchanged among multiple entities is trade-related
confidential data.

o Robust business services that can be plugged into any internal or external securities
processing application.

0 Guaranteed messaging to ensure that each and every message surely reaches the
destination.

183

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

The solution
A standardized SOA-based framework can enable financial companies to achieve their
business goals by providing a service-based platform to integrate new and existing
applications and systems with STP functionality, implementing industry standards, and
building an infrastructure that would support the dynamic financial messaging required for
continuous processing for all types of financial instruments. Service-oriented architecture can
provide the foundation and Web Services can provide the building blocks for application
architecture in order to achieve seamless trade processing.

A SO A-based framework is capable of providing support for multiple XML standards at the
same time, such as ISO 15022 and FpML, and adding support for further standards without
significant redevelopment effort. With the use of Web Services as an enabling technology,
STP-related problems and issues will shift from connectivity among different applications in
house and with trading partner applications to the content and structure of the information
that is exchanged. The analogy here will be that Web Services will define the standard postal
mechanism along with the envelope and addressing format for exchanging letters. What is
inside the envelope (the content of the letter) will be defined by the XML-based business
process standard, such as ISO 15022 XML.

Why Use Web Services for STP?
It is important to mention here that Web Services will not be the ONLY technology, but
ONE of SEVERAL technologies, which will play a role in SIP. Also, as a word of caution,
the use of Web Services for SIP, especially for transaction-oriented external business
processes, is still far away. It is, however, only through imagining an evolving technology
that we set the benchmarks and direction for its growth, foture research, and, last but not
least, its adoption.

There are several benefits of using Web Services as one of the core technologies for STP. As
we will see below, the central benefits are:

o Based on open standards.

o Easier business process management.

o Easier integration.

o More flexible.

o Better and cheaper customer service.

Based On Open Standards

Since external STP requires integration of business processes across corporate boundaries
using exchange of documents or messages, the communication among different systems
should be based on open standards.

184

www.manaraa.com

Web Services and Straight Through Processing (STP)

Web Services fully utilize open standards, including Hypertext Transfer Protocol (HTTP),
Extensible Markup Language (XML), Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL), and Universal Discovery, Description and Integration
(UDDI). Application-centric Web Services enable companies to integrate business processes
without the constraints of proprietary infrastructures, platforms, and operating systems.

At this stage of the paper, we will introduce the standards for the financial industry that will
enable STP for all financial instruments. The principal standards we will look at are:

o FpML.

o FIX.

o SWIFT.

o ISO 15002 XML.

These standards will work together with Web Services, rather than in competition, as they
address the orchestration layer of the Web Services stack. In other words, they provide the
core layer that describes business process semantics for STP. These trading standards are still
evolving as a result of the re-engineering of the core business processes underlying STP, but
once matured they will standardize the trade-related data that is shared between multiple
applications for internal STP and with the trading partners for external STP.

Financial Products Markup Language (FpML)

FpML, based on XML, aims to standardize e-commerce activities in the field of financial
derivatives, swaps, and structured products. All categories of over-the-counter (OTC)
derivatives will eventually be incorporated into the standard. It aims to streamline the
processes, such as electronic deal confirmation with external counter parties, quantitative
modeling, and risk management, supporting trading activities in the financial derivatives by
describing these products and associated business interactions, based on industry standards.
See http://www.fpml.org/ for more details.

Financial Information Exchange Protocol (FIX)

The Financial Information Exchange protocol (FIX) is a language that defines specific kinds of
electronic messages (pre-trade and trade messages) for communicating securities transactions
between financial institutions, primarily investment managers, brokers/dealers, ECNs, and
stock exchanges. The most important feature of FIX that differentiates it from other protocols
in the financial industry is that FIX is a connected, session-based protocol. See
http://www.fixprotocol.org/ for more details.

SWIFT

SWIFT is the industry-owned cooperative supplying secure messaging services and interface
software to 7,000 financial institutions in 192 countries. It currently totally dominates the
messaging services used by banks, brokers/dealers, and investment managers. The average
daily value of payment messages on SWIFT is estimated to be'above USD 5 trillion and
SWIFT carried over 1.2 billion messages in 2000. See http://www.swift.com/ for more details.

185

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

ISO 15022 XML

ISO 15022 XML is a result of the convergence of the most important messaging protocols in
the financial vertical industry - FIX, FpML, and SWIFT. It is kind of a superset covering the
domains of these existing messaging protocols. ISO 15022 XML is being developed via the
use of business modeling with an XML-based representation of the business processes,
leveraging the expertise of FPL in the pre-trade and trade (orders and executions) domain and
SWIFT in the post-trade domain.

ISO 15022 XML will play a major role in STP, as it brings together the different parts of the
trade life cycle and ensures that business items are represented in a standard way. This would
be the key to the solution to move towards shortened settlement cycles.

The following diagram shows how ISO 15022 XML can eliminate the current manual
processes required for settlement, matching, and reconciliation:

I ISO 15022 ISO 15022 J Trading pricing
ISO 15022

XML Trade Pricing XML XML
System I

System

ISO 15022 ISO 15022
XML Risk Management Risk Management XML

System System
'-

ISO 15022 ISO 15022 ISO 15022
XML Settlement .,._ XML --- Settlement 1- XML ._

System System

- -

ISO 15022 Collateral ISO 15022 Collateral ISO 15022
XML Management ... XML Management XML " System System

A few very important points:

186

1. The migration to ISO 15022, which started on the SWIFT network in 1997, will
be gradual and cannot happen on an overnight basis. Furthermore, financial
institutions cannot directly implement ISO 15022 XML and skip ISO 15022, as
the current series of ISO 15022 messages available on SWIFT are not expected to
be available on SWIFTNet before the end of the migration to ISO 15022.

2. The creation ofiSO 15022 XML would eventually mean the elimination of
SWIFTML. The financial institutions should start migrating towards ISO 15022
XML, if they have not already started to do so.

www.manaraa.com

Web Services and Straight Through Processing (STP)

3. The emergence of ISO 15022 XML does not mean that the investment in
adopting ISO 15022 standards will be a waste. Financial companies will be able
to fully leverage their investment if they have already built an internal dictionary
of business elements. It is only the syntax of the message that will change from
here on and the business applications should be independent of it. The messaging
part provided and supported by messaging applications should be flexible enough
to add any XML-specific processing.

See http://lighthouse-partners.com/xml/proj_iso15022xml.htm and http://www.15022.org/ for
more details.

Easter Business Process Management
Web Services help to clearly separate business process logic and the participating business
services for both internal and external STP, thereby making the development, execution, and
management of these services much easier. The main advantage of Web Services is that
companies can use Web Services interfaces for process management, logic transformation,
and integration for legacy and packaged applications, instead of writing non standards-based
custom code for each application.

A Web Service can be implemented as its own business process, or it may be composed of
many business processes (both public and private) with each business process being
implemented as a Web Service in itself. Each activity comprising the workflow of a business
process is logically linked to a Web Service.

Apart from easier application integration, user-centric Web Services make the human
intervention (which may be an activity in an STP business process workflow) easier by
providing personalization, interface customization, and support for multiple languages, greatly
enhancing the user experience. It is important to mention that human intervention, especially
in the case of exceptions such as a broker entering wrong trade data, can never be eliminated
irrespective of the level of automation.

The key technologies and specifications that will enable the orchestration of internal and
external STP-related business processes as Web Services include Web Services Flow
Language (WSFL), Business Process Modeling Language (BPML), XLANG and FpML, FIX
protocol, and ISO 15022 XML.

Easter Integration
A typical business process related to STP may be supported by multiple diverse applications
such as C++,Java, or Excel VBA-based front-end systems;Java, C, or C++-based middle
office systems; and AS400 or mainframe-based legacy systems. It is virtually impossible to
manage a workflow and execute the different tasks associated with it, which may require using
APis of other systems or exchanging messages with them, unless the underlying technology
provides easy integration facilities. XML-based Web Services are an ideal technology for
integration in such a diverse environment as they allow applications to communicate across
the Internet or intranet in a platform- and language-independent fashion.

187

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Whether the underlying STP applications are integrated synchronously or asynchronously,
Web Services enable both types of integration and provide substantial advantages over the
traditional technology for achieving them. Through Web Services Definition Language
{WSDL), a Web Service can be defmed to have an invocation style as document
{asynchronous) or RPC {synchronous).

Asynchronous message-oriented applications have a different design and architecture from
stateful and synchronous function/method-oriented applications. It is the application
architecture, business requirements, and partner agreement {between in-house groups for
internal STP and partner companies for external STP) that would dictate whether the
integration should be synchronous or asynchronous.

Since application integration forms the backbone of STP, it is worthwhile discussing the
benefits of Web Services for both synchronous and asynchronous integration.

Benefits of Using Web Services for Synchronous Integration

Web Services technology solves some of the shortcomings ofRPC-and API-oriented
synchronous integration {non-XML standard-based), as follows:

188

o RPCs and APis offer a static solution for function-level integration, even if they use
XML for client/server communication. Web Services offer a dynamic approach for
integration, where the services can be discovered, bound to, and used dynamically.
This is primarily enabled due to the fact that Web Services are found using a defined
standard - UDDI.

o RPCs and APis can use any proprietary protocol, but Web Services are built and
used over existing, universal protocols such as HTTP and SMTP. This new
distributed computing solution exploits the openness of specific Internet technologies
to address many of the interoperability issues of CORBA and DCOM.

o RPCs and APis do not offer servers a standard way of exposing their public methods
to clients. Each server program may have its own implementation. Web Services, on
the other hand, are always exposed by the servers in a standard form using WSDL.
Thus, the clients and servers do not have to implement their own proprietary format
for using and publishing public methods.

www.manaraa.com

Web Services and Straight Through Processing (STP)

Request

API

1l
Java RMI

lL CORBA
DCOM

RPC
Web Services

Application A Response Application B

Benefits of Using Web Services for Asynchronous Integration

Web Services can be used for achieving loosely coupled asynchronous integration among
applications. In this scenario, the body of SOAP messages exchanged between the Web
Services client and Web Services provider contain arbitrary XML documents, which can also
be described in WSDL and validated using XML Schema.

Web Services will be used hand-in-hand with existing messaging technologies and protocols
includingjava Messaging Service QMS),J2EE Connector Architecture QCA), IBM's MQ
Series, and Microsoft's .NET platform and MSMQ For example, if a company has an existing
J2EE infrastructure, its STP solution should have the capacity of exchanging SOAP
documents andJMS-based messages over HTTP, HTTPS, and (in future) HTTPR usingJCA
for integration among disparate systems, while providing a secure communication.

The benefits of using Web Services for asynchronous communication among STP-based
applications include:

0 The flexibility to define loosely coupled interfaces based on standards.

0 The underlying language used to represent the data within the messages is XML. It
will be necessary to map data representations between internal and external
applications supporting STP. Thus, irrespective of the style of XML used to connect
the applications, the very fact that it is XML will guarantee the flexibility and ability
to create this mapping.

o The fact that it is only through the use of technologies such as Web Services that the
real goal of service-oriented architecture (configure rather than code) can be
achieved. Services-based architecture will yield tremendous cost savings in terms of
flexibility, reuse, and speed of making any changes, the key requirements of STP.

189

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Flexibility

Service-oriented architecture-based Web Services can provide the required flexibility for STP
in terms of architecture and changes in configuration, control, and standards in the business
processes. This type of flexibility is not offered by the middleware existing today.

Better and Cheaper Customer Service

Both user-centric and application-centric Web Services can play a major role in customizing a
range of financial and non-financial product packages suited for each customer's
specifications, making them cheaper and faster to deliver. This can be achieved by assembling
Web Services targeted for each such product and bundling them together. Of course the
assumption here is that there will be servers and tools available that will make this
orchestration of Web Services possible.

An Example Usage of Web Services for STP

In this example, we will be discussing and using the Real-time Trade Matching (RTTM)
services introduced by Government Securities Clearing Corporation (GSCC) and
Mortgage backed Securities Clearing Corporation (MBSCC) in the last quarter of
2001 and first quarter of 2002. We will also discuss the shortcomings of their current
implementation and how Web Services alleviate them.

In this example, we will discuss how Web Services can potentially be used in a real-time
matching utility for mortgage and government-backed securities. The matching utility
provides automatedjust-In-Time trade information and a messaging network from pre-trade
to post-settlement for all trade participants including the buying entity, the selling entity, the
exchange, and the central counterparties.

Matching Utility Description
The matching utility application enables the participants to submit and compare executed
trade terms in real-time. This matching utility allows users to submit trades upon execution
and achieve binding confirmation upon successful matching. It provides more certainty,
reduces execution/market risk and eliminates the redundancy between the verbal checkout
process and the clearing corporation's matching process.

The different entities involved in the matching application include the following:

190

o A clearing agency, which provides post-trade comparison, netting, risk management,
and pool notification services for the financial instrument presented in the example
(government and mortgage-backed securities).

o A buying entity, which can be any one of the following: commercial banks,
government-sponsored enterprises, institutional investors, insurance companies,
international organizations, investment managers, inter-dealer brokers, mortgage
originators, private investment companies, or registered brokers or dealers.

www.manaraa.com

Web Services and Straight Through Processing (STP)

o A selling entity, also known as a counterparty of trade, and can be any of the entities
listed opposite.

An Example Business Process
There are multiple business processes involved in the matching utility, each requiring
exchange of messages among the participants mentioned in the previous section. The
complexity and number of messages exchanged will largely depend on the buying and selling
entities involved in the trade, for example dealer-dealer vs. brokered trades, and the sanity of
trade data exchanged (the data comes in the right and normalized format, whether it requires
modification or cancellation of trade, etc.).

For sake of simplicity, however, we will discuss a very basic business process involved in
the matching utility. In this business process, a dealer-dealer trade is submitted bilaterally
for matching. The following diagram shows the messages that are exchanged among the
different entities:

"' 2a
Dealer A MT50 9 Trade Create

... A ccepted

I MT518Co
4b

mparison Request

I 1. I
MT515 Instruct !

5a :<II
MT509 Trade Create Matched

5c

RTIM

2b
MT518 Comparison

Request

4a
MT509 Trade Create Accepted

5b
MT509 Trade Create Matched

5c
MT618 Comparison Request ~ "" MT618 Comparison Request

Cancel (due to Match) 1 Cancel (due to Match)

T T

I o .. ,., A I

Dealer B

T y

Dealer B

191

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

The Use of Web Services
Let's discuss the usage of Web Services for a RTTM application right from the front office
trading application, to the middle office operation's application, to the back office matching
application to the MBSCC's RTTM application, and finally to the trading partners back-office
matching application. It will involve the use of Web Services for both EAI and B2Bi for an
STP-related business process.

In this example, a fixed income broker for Dealer A enters a trade through the Web-based
trading application. The trade data is passed from the trading application's backend to the
matching application. Dealer A's matching application invokes a trade matching Web Service
published by MBSCC. Their RTTM application in turn invokes the trade counterparty's Web
Service (Dealer B) and passes on the response back to Dealer A's matching application. The
entire communication occurs over the Internet, using XML-based standards for RTTM
business processes. The messages received by Dealer A's matching application are in turn
delivered to the STP Messaging Center Web-based front end asynchounously using Web
Services. Such a front end will display messages grouped according to the financial
instrument; it will help consolidate all message types under one application rather than having
multiple front ends to display messages.

192

www.manaraa.com

~

w

G
et

 L
oc

at
io

n
an

d
B~

nd

R
e

q
u

e
st

~
~

n
d
l
l
~

..

In
fo

rm
a

ti
o

n

•
..

U
O

O
t

R
eg

iS
try

fo

r
B

2B
i (

P
riv

at
e)

G
et

 L
oc

au
on

an

d

B
in

d
R

e
q

u
cs

l

~w
so
~

in
di

ng

..

rm
at

io
n

..
• U
D

D
I

R
eg

is
tr

y
lO

t
EA

I
(P

riv
at

e)

i

Tr
ad

e
I n

fo
rm

at
lo

n
P

as
se

d
D

ve
r

...-

~
Mai

nfr
ame

u

Tr
ad

i'"
C

..

G
pl

1c
atr

onJ

J2
E

E
-b

as
ed

A

pp
lic

at
io

o
S

er
ve

r

Tr
ad

e
In

fo
rm

at
io

n
P

as
se

d
O

ve
r

I
W

C
b

S
er

vi
ce

s
R

e
q

u
e

st
·

Tr
ad

el
n

fo
rm

at
io

n

W
eb

 S
er

vi
ce

s
R

es
po

ns
e-

T
ra

de
 C

re
a

te
 A

ck
n

o
w

le
d

g
e

m
e

n
t

M
es

sa
ge

R

ec
ei

ve
d

fr
om

M

B
SC

C

M
es

sa
ge

s
R

e
p

o
si

to
ry

S
U

br
m

t
I

T
ra

de
 O

rd
er

 +

T
m

di
n

g

A
pp

lic
at

io
n

+

Fi
xe

d
rn

co
m

e
Tr

ad
er

·8
r M

e
ss

a
g

e
 C

e
n

te
r

A
p

p
lic

a
tio

n

G
et

 L
oc

at
io

n
an

d
 B

in
d

R
eq

ue
st

W

S
D

L
l

•
..

•

B
jf

ld
jn

g

~
:v

r
]

In
fo

rm
a

ti
o

n

U
D

D
I

R
eg

is
tr

y
fo

r
B

2B
i (

P
riv

at
e)

D
el

iv
er

s
th

e
M

es
sa

ge

W
eb

 S
er

vi
ce

s
R

e
q

u
e

st
·

R
eq

ue
st

 f
or

T

rn
de

 M
at

ch
in

g

~
t:
me
)-
.~
 ..
{

tnt~
rne)

C
le

ar
in

g
C

O
tp

O
ra

tio
n

(M
B

S
C

C
)R

T
M

A

p
p

ltc
a

tio
n

D
e

a
le

rS

:E

CD

C
'" en

CD
 ~- () CD

C/
l

D>

::
J a.

en

.-
+

.... D>

 ao:

::
T

.-

+

-1

::
T

.... 0 c ao

.
::

T

"U

.... 0 (
)

CD

C
/l

C/
l

::
J

ao
. - en -1

"U
 -

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

The sequence of steps is as follows for the STP and Web Services for B2Bi portion of the
process:

1. A fixed income trader at Dealer A submits a trade for a mortgage-backed security
through the Web-based trading application. The trade information is passed from
the J2EE-based Application server in the middle tier to the mainframe-based
trading application at the backend.

2. The trade information is passed from Dealer A's mainframe-based trading
application to the J2EE-based matching application.

3. Dealer A's matching application gets information about MBSCC's Web Service
(Real-time trade matching) by performing a look-up in the private UDDI registry.
This private UDDI registry is used for all external services (Web Services used
for B2Bi).

4. The location of and WSDL binding information for the Web Service is sent to
Dealer A's matching application.

5. The matching application invokes the Web Service published by MBSCC to
submit the trade information asynchronously. The communication is based on
SOAP over the Internet. The MBSCC's RTTM application receives the Web
Service request as a SOAP document containing trade information.

6. The RTTM application gets information on the trade matching Web Service published
by the counterparty mentioned in the trade data by looking it up in the UDDI.

7. The location of and WSDL binding information for the Web Service is sent to the
RTTM application of MBSCC.

8. The MBSCC's RTTM application passes on the trade created acknowledgment
back to Dealer A's matching application and the request for trade matching to
Dealer B's matching application through Web Services using asynchronous
communication. The communication is based on SOAP over the Internet.

It is worth mentioning here that this communication will be based on XML standards defined
for business processes for RTTM applications by the financial industry consortium.
Furthermore, the binding information for frequently used Web Services should be cached by
the client application, to avoid the resource-intensive and time-consuming dynamic binding.
In this example, Web Services loosely integrates Dealer A's matching application, MBSCC's
RTTM application, Dealer B's matching application, and Dealer A's front-end application.

The sequence of steps for the STP and Web Services for EAI portion of the process is as follows:

194

9. On receiving the response, Dealer A's matching application gets Web Service
information about the message broker by performing a look-up in the private
UDDI registry. This private UDDI registry is used for internal services (Web
Services used for EAI in STP).

www.manaraa.com

Web Services and Straight Through Processing (STP)

10. The location of and WSDL binding information for Web Services published by
the message broker is sent to Dealer A's matching application.

11. The matching application invokes the appropriate Web Service and sends the
message received from the MBSCC asynchronously to the message broker.

12. The message broker parses, stores, transforms, builds, and routes and delivers the
message through Web Services to the Web-based front end Messaging Center
application.

As can be seen from the example with the usage of Web Services, applications that are being
integrated no longer have to know the specifics of static information such as how, when, and
where. This completely changes the traditional paradigm of point-to-point integration for EAI
and B2Bi and will be a huge factor in the adoption of this technology for STP.

UDDI Registry for EAI and 8281

A point worth mentioning in this example is that we used two different UDDI registries for
Dealer A - one for maintaining information of internal Web Services used for EAI and the
second for external Web Services. It is important for companies not to mix information about
Web Services used for two separate domains (EAI and B2Bi) to allow easier and secured
maintenance and usage of UDDI.

Advantages of Web Services Over the Current
Implementation

Although the RTTM service is a big step towards STP as far as government and mortgage
backed securities are concerned, in its current form it has major limitations. The proposed
Web Services-based architecture provides several advantages, as follows.

Use of the Internet Rather Than a Proprietary Network
In its current implementation, MBCSS requires using a proprietary network for RTTM
services. This effectively forces every participant, small, medium, or large, to use and pay for
this network.

Web Services eliminates the need for any proprietary network, as the messages can be
encrypted and safely sent over the Internet. It must, however, be noted that Web Services can
also be used over a proprietary network.

Security solutions and standards for Web Services are still not mature and are being worked
on. There is no question that the next generation of Web Services will allow for the usage of
Digital Signatures and other security solutions.

195

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Use of XML Rather Than SWIFT

In its current implementation, MBCSS uses SWIFT ISO 15022 format. The usage and
significance of SWIFT to the financial industry is the same as EDI has to the manufacturing
industry. The use of XML rather than SWIFT has the same advantages as the much publicized
and discussed advantages of using XML rather than ED I. Some of these advantages include:

o Free from the use of specific vendor software - with XML, financial companies can
integrate business processes with their trading partners without having to use specific
vendor software required for SWIFT.

0 Flexible standards - XML is based on simple, flexible, and open standards, while
SWIFT standards are very strict and inflexible. As a result, financial companies will
be able to automate the exchange of business information, dramatically improve
efficiencies and reduce operating costs with the use of XML.

o Cheaper - the initial setup and operational costs of SWIFT are very high. XML
enables loose integration at a fraction of the effort and cost of traditional SWIFT.

o Extensible - with XML, financial companies do not need to replace or rebuild their
applications; instead, they can simply XML-enable the data and systems they
already have.

o Human readable - XML is both machine and human readable while SWIFT is only
machine-readable.

o Effective use of Internet - XML effectively uses the Internet to transfer the messages
securely, whereas most of the SWIFT message flow occurs through expensive VANs
and VPNs.

It is worth mentioning that there are disadvantages of the use of XML rather than SWIFT, as
well. Two of the major disadvantages include:

o XML messages can be very large (in some cases five to ten times their corresponding
SWIFT messages) making XML much slower than SWIFT. Such a large flow of data
over the Internet uses up a lot of network bandwidth and slows down the whole
process.

o Several fmancial organizations and companies are promoting their own flavors of
XML standards. This adds to a lot of confusion in the marketplace about the
interoperability issues.

Co-existence of SWIFT and XML

At this stage it is worth mentioning that we do not envision the complete replacement of
SWIFT with XML. In fact, it will be naive to even think so, and it is a misleading notion to
claim that XML will completely replace SWIFT. It would be prudent for companies to build
the XML-world based on the last decades of SWIFT rather than tear it all down.

196

www.manaraa.com

Web Services and Straight Through Processing (STP)

During these years, 7000 or more financial institutions in more than 190 countries have
implemented SWIFT. Collectively, these institutions, active in payments, securities, treasury,
and trade services, exchange millions of messages valued in trillions of dollars every business
day. SWIFT has also been highly integrated into the core business processes of financial
companies. This level of integration required considerable effort.

It is absolutely not possible to undo all SWIFT from business processes and then redo
everything based on XML. XML and SWIFT will coexist for a long time. Their
interoperability is one of the key success factors for large, medium, and small size companies
doing business on the Internet. We have already discussed the ISO 15022, ISO 15022 XML,
FIX protocol, and their convergence in the Based On Open Standards section.

Elimination of IP-based environments
Web Services will play a critical role in overcoming the communications barriers that exist
within the IP-based environments that the securities industry is now embracing. IP-based
environments make the integration of applications very static and inflexible, as it uses an X.25
protocol-based packet switched network. The support for this protocol, however, is being
withdrawn from November 2002.

Where To Start?
Financial companies should start using Web Services for internal STP at the function,
application programming interface (API), or remote procedure call (RPC) level for integrating
applications synchronously. This will orient the IT staff with the technology issues involved in
using Web Services, which will be very helpful in overcoming the challenges posed later when
the company uses Web Services for external STP. It is much easier to control, manage, find,
execute, and maintain Web Services within an intranet as compared to using them over the
Internet across the corporate firewall. Furthermore, it would help financial companies in
identifying business opportunities for using standardized and relatively cheap Web Services
solutions as against expensive EAI broker solutions.

Web Services by themselves, however, are not the nirvana for STP. An STP solution within a
large financial institution would still comprise multiple solutions that together would offer
both non-real time and real-time integration, support for managing semantic transformations,
business process integration, and application integration based on open standards and
proprietary formats.

197

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Conclusion
STP manages and reduces the settlement time and risks linked to the lead times of cross
border trades and payments for all security instruments including equity, fixed income,
derivatives, and foreign exchange. It aims to make trade processing as automated as
possible, allowing STP-related business processes to be carried out without any unneeded
human intervention, thereby reducing to a minimum the overall processing lead time and
the related risks.

Web Services offer a platform-neutral approach for integrating STP applications, so that they
can be used to integrate diverse systems in a way supported by standards rather than
proprietary systems. The ability of a financial institution to have access to real-time trade
related information spanning multiple companies, in-house departments, applications,
platforms, and systems is one of the most important driving factors behind the adoption of
Web Services. Financial institutions should first start using Web Services for their internal STP
and for business processes that are non-transactional in nature, before they risk using Web
Services in external STP.

198

www.manaraa.com

Web Services and Straight Through Processing (STP)

199

www.manaraa.com

Authors: Mike Clark and Romin Irani

• Intermediary Services

• Intermediary Architecture

• Intermediary Issues

• Value Added Service Suppliers

• Brokerages

www.manaraa.com

Web Service Intermediaries

We are now at the stage where we are seeing a growing number of Web Services
implementations across several industries. These initial implementations have served not only
to reinforce the fact that Web Services provide tremendous value, but at the same time to
identify pieces in the Web Services puzzle that need to be present in order to effectively
implement these solutions.

In this paper, we shall take a look at an entity called the Web Service Intermediary. These
intermediaries are increasingly getting recognized as the means to provide value added
services like Authentication, Quality of Service, etc. We shall also take a look at the general
architecture of an Intermediary and practical issues that Web Services publishers and
subscribers will have to grapple with when dealing with an Intermediary. We will then take a
look at existing support for Intermediaries in Web Services standards, before moving on to
look more closely at a specific type on Intermediary, the Value Added Service Supplier. After
this, we will examine the roles that can be taken on by a Web Services brokerage.

What Is a Web Service Intermediary?
An Intermediary is a component that lies between the Service Client (subscriber) and the
Service Provider (publisher). It basically intercepts the request from the Service Requestor,
provides an intermediary service (functionality) and forwards the request to the Service
Provider. Similarly, it intercepts the response from the Service Provider and forwards it to the
Service Requestor.

A Web Service intermediary therefore lies between the Web Service Client and the Web
Service Provider as shown overleaf:

www.manaraa.com

Mike Clark & Romin Irani

Note that there need not be just one intermediary between the client and the Service
Provider. As shown in the diagram below, it is possible to combine Intermediaries in several
ways. As we see, a chain of Intermediaries (A and B) intercepts the HTTP Request from the
Web Service client. Another Intermediary, C, intercepts the HTTP Response from the Web
Service Provider.

HTTP HTTP
Request Request

HTTP HTTP
Response Response

What this means is that it is possible to place Intermediaries in a variety of configurations. A
fact to note is that the Web Service Provider (as a part of a Web Service implementation)
might utilize other Intermediaries at the back end.

It should now be clear that an Intermediary can be authorized to intercept the calls from the
service client to the provider. A Web Service intermediary can in fact be a Web Service itself
that provides a certain piece of functionality. Let us now move on to what services these
Intermediaries can provide to us.

Intermediary Services
Web Services Intermediaries can provide us with extremely important services as shown
below:

202

D Authentication Services.

D Auditing Services.

D Management Services.

D Performance Improvement Services.

D Aggregation Services.

www.manaraa.com

Web Service Intermediaries

Authentication Services
An Intermediary can provide an authentication service that helps to validate the Web Service
client. A well-known example of an Authentication Intermediary is Microsoft, which is
providing an Authentication Service called Passport (http://www.passport.com/).

In a sample authentication scenario, a Web Service client will first authenticate itself with the
Authentication Intermediary and receive a token to identifies itself. It can then use this token
and pass it along in its invocation to the Web Service Provider. The Web Service Provider
will use that token and validate it with the Authentication Intermediary again as shown below:

and Receive Token
3. Validate Token

2 . Invoke with Token

Auditing Services

As Web Services are used between enterprises to perform business operations, it is extremely
important that a proper log of messages is kept. An Auditing Service will generally include
auditing the activity of the service, its reliability, downtime, etc. An Auditing Service would
therefore keep a log that contains information to track all of the above characteristics of the
service. It would also serve to track who is using the service and be useful in tracking down
any security breaches.

In an Auditing Service scenario, the service interposes itself between the Service Client and
Service Provider as shown below:

LOG

203

www.manaraa.com

Mike Clark & Romin Irani

Management Services
A Management Service Intermediary is used to collect a number of useful reports about the
Web Service. Some of these reports would include the number of Web Service hits and Web
Service client usage (services used, total time usage, monthly/yearly reports, etc.). This would
definitely help in identifying if the Web Service were meeting the Quality of Service (QoS)
specified in the contract between the two organizations. This intermediary could also track the
health of a Web Service and trigger an alert if theW eb Service goes down. It functions in a
similar manner to the Auditing Service explained above.

Performance Improvement Services
An interesting use of Intermediaries is in the area of Performance Improvement.

A Cache Intermediary could be used to store data frequently requested by Web Service
clients, for example News Items that change every hour. So, when a client requests this data
the intermediary can provide this information from its local cache instead of making an
expensive network call to the Web Service. This results in reducing some of the load on the
Web Service too. By placing several such "Cache" servers across the network, the response
time to the clients will also be improved. Note that we will need a mechanism for the "Cache"
servers to regularly update their caches with the latest information.

A Store and Forward Intermediary is used in situations where we don't want to overload the
Web Service with too many requests. This is similar to the concept of a Batch, where a
number of instructions are collected together and sent across at one time. So, what a Store and
Forward Intermediary can do is to collect these requests from different Web Services clients
and then shoot them off to the Web Service Provider. This would make the Web Service more
asynchronous, which is fine if the client doesn't want or need an immediate response.

Aggregation Services
An Aggregation Intermediary is a powerful intermediary that can be used to provide a
number of value added services that it combines and provides as a uniform service to the
client. An Aggregation Intermediary could be used to combine several Web Services into one
composite Web Service. An example of Aggregated Services could include transaction
management, combining different sources of information into a single unified interface, etc.

In addition to the above services, Intermediaries can provide a host of other services like
Reliable Messaging, Transformation of Data (XMLIXSLT), Registry Services, Utility Services
like Contacts, Calendar, etc.

Now that we have looked at different kinds of Intermediary Services, let us look at the general
architecture of a Web Service Intermediary.

204

www.manaraa.com

Web Service Intermediaries

High-Level Web Service Intermediary Architecture
Shown below is a very basic set of components that would comprise a Web Service
Intermediary. This is by no means a complete set of components but is just to provide you
with a glimpse of what it could contain:

INTERMEDIARY COMPONEENTS

Web Services Stack

(TCP/IP, HTTP, SOAP, WSOL, UOOI]

Core Fuctionallty

----SOAP/HTT~ SOAP/HTTP- "'

A Web Service intermediary would have the basic Web Services Stack, which will allow it to
seamlessly plug in to the Web Services invocation route. The Core Functionality component
is the main functionality of the Web Service. This could be aj2EE application, a COREA
based application, or .NET component. Similar to Web Services, it should not matter what the
platform is or what programming language was used to create this functionality.

The Rules component can serve to define the behavior of the Intermediary; how it interacts
with different clients, its interaction with other intermediaries, etc. The Log database holds all
the information on the messages passing to and from the intermediary. Finally the Repository
can be used not only for its core functionality but also as a source of information about other
intermediaries that it needs to interact with.

Web Service Intermediary Issues
As usual, the world of Intermediaries comes with its own set of issues that we need to be
aware of. We have seen that Intermediaries intercept the calls from the Service Client to the
Service Provider. We have also seen that Intermediaries could be chained together.

What this means is that Security is of prime importance whenever intermediaries are
involved. For example, if I am a Web Service client, I would like to know which
Intermediaries my request is going to go through. Can I trust those intermediaries? Do I need
to enforce security through encryption, signatures, to guarantee not only the source of my
data but also the validity of my data?

205

www.manaraa.com

Mike Clark & Romin Irani

Of equal importance are Transactions and Service Context. Since there could be a chain of
Intermediaries that are present in a single service invocation, care should be taken that the
service context is propagated correctly. Also the transaction context needs to be propagated to
ensure correct execution of the request.

Other interesting issues are those of Inspection and Routing. A Web Service provider should
have a mechanism for describing the Intermediaries that are supported by its Web Service.
This way, there is a standard mechanism for the Web Service client to inspect the
Intermediaries. Similarly, it would be great to have a mechanism whereby the SOAP Request
can be precisely routed between a specified set of intermediaries only.

As these issues get addressed, there is definitely an opportunity here for a new kind of
Intermediary called the Trusted Intermediary. In the digital security world, we have entities
called Certificate Authorities that facilitate the authenticating of organizations. In a similar
manner, we could see the rise of the "Trusted Intermediary" that could provide us with a
complete range of secure intermediary services. Using such a trusted intermediary might be
more practical than a number of uncoordinated intermediaries. Such trusted intermediaries
could very well turn out to be software companies like Microsoft, financial institutions like
Visa, portals like Yahoo, or perhaps a complete new breed of companies.

Standards and Web Services Networks
It is important that each of the above issues be addressed appropriately in any standards that
come forth for Web Service Intermediaries. At the moment, there are no standards for Web
Services Intermediaries.

As SOAP is being extended to incorporate features like transactions, security, context, etc., it
would be advisable to shape these in a manner that the intermediaries can implement too.

The XML Protocol Group at W3C (http://www.w3.org/2000/xp/Group/) is addressing a
number of issues relating to Intermediaries. Microsoft has also submitted a WS Protocol that is
used to route a SOAP message through a predefined set of intermediaries. The next
generation of Apache SOAP called AXIS (http://xml.apache.org/axis/) is going to provide
support for intermediaries.

While the standards are being developed, we are seeing the development of Web Services
Networks that function as intermediaries for you and provide a set of services like hosting,
security, context, maintaining relationships. Web Services network providers include Grand
Central (http://www.grandcentral.com/) and Flamenco Networks
(http://www. flamenconetworks .com/).

206

www.manaraa.com

Web Service Intermediaries

The Birth of the UDDI Value Added Service Supplier
The UDDI registry is still a good candidate for the way forward for businesses today, despite
there being moves afoot to quietly drop it out of the picture. One often asked question,
however, is how do other independent directory sites such as SalCentral
(http://www.salcentral.com/) and XMethods (http://www.xmethods.com/) fit within the
overall architecture? We now look more closely at a specific type of Web Service
Intermediary: The UDDI Value Added Service Supplier.

Value Added Service Supplier (VASS)
UDDI should be seen as an enormous warehouse full of products. If you go to a warehouse as
a customer you are not actually interested in everything on the shelves, it would be far better
to only visit areas which have products that you're interested in, for example books or CDs.

A V ASS can give you as a customer searching abilities that are currently beyond the
capabilities of UDDI. A V ASS will allow you to access research that has been carried out on
behalf of the industry. This enables you to select that "perfect supplier" or Web Service by
using selective information such as historic research, validity of information, level of
documentation, ease of use, etc. This effectively filters out the invalid entries and gives the
user information that's been cleaned, validated, and researched.

All too often we rely on simple categorization and the allocation of keywords to select Web
Services. The V ASS, however, should be an independent organization that offers the customer
impartial advice allowing them to make informed judgments as to the correct supplier or Web
Service to choose.

The VASS Business Plan
Currently, UDDI has been misinterpreted as a one-stop shop (similar to a web search engine)
for finding, selecting, and keeping track of Web Services and suppliers. This in our opinion is
not the case. In fact UDDI is more similar to a data storage device (database) that allows a
Value Added Service Supplier (V ASS) to sit as a layer above this repository and act as an
intermediary between the customer and UDDI by offering additional services that supplement
and add value to UDDI. Customers may of course still interact with the UDDI registry
directly but simply lose some of the additional services the V ASS can supply.

207

www.manaraa.com

Mike Clark & Romin Irani

Below is a diagram to show some examples of Value Added Services:

Alerts
Often as a customer you haven't just got one requirement for a business supplier, it's an
ongoing requirement. An example of this would be always getting the cheapest quote for
stationery. Alerts allow a VASS to e-mail you when a supplier or Web Service is registered
within the UDDI that meets your requirements. By asking for an alert on "Stationery and New
York", you would receive notifications every time a new stationery supplier from that city
joins the UDDI registry. This potentially allows you to get better quotes and lower prices.

Even though we mention here that Alerts are sent to the Customer via e-mail, it is worth
noting that this is only one method of providing this information to the customer. Other such
notification methods could be:

0 Instant messaging (AOL, Yahoo, MSM, etc.).

0 SMS text messages.

o Running a predetermined Web Service (this predetermined Web Service could carry
out some functionality, such as changing from using a primary Web Service to using
a secondary Web Service).

Please note the use of running a predetermined Web Service; this effectively allows a V ASS to
become part of a 'mission critical' solution for a customer. The ability to instantly notify you
by actually changing the way your Web Service functions can be essential in situations of
fallback and disaster recovery.

Watching
What if the Web Service fails, what if the supplier moves, changes their tax reference, or a
worse case simply changes or moves the Web Service?

208

www.manaraa.com

Web Service Intermediaries

Along comes the VASS and allows you to nominate specific UDDI registry entries. Whether
it's the organization or Web Service link you're interested in, the VASS will watch the UDDI
entry on your behalf and notify you automatically when it changes.

Organizations are using UDDI as a repository for information to allow customers to find
suppliers. Because UDDI is capable of containing technical information concerning a Web
Service, however, this can be used by the V ASS to poll that Web Service on a regular basis to
make sure that it's available and working correctly. This regulated information can even be
used to form part of the Service Level Agreement.

Rating
Ratings allow all the information that a V ASS gathers (such as availability and research on a
Web Service and organization) to be signified as a single value that denotes its overall
performance and usefulness. This rating can then be used effectively by the customer within
the search filter, to only select Web Services that have a good rating.

As far as who rates a Web Service or UDDI registry entry, a number ofrating agencies will
probably come about, although a number of factors will dictate their success:

D Public opinion.

D Category suitability (some agencies may provide ratings for UK companies only).

D Formal and public acceptance by other corporations (such as Microsoft, IBM, etc.).

Search Filter
The UDDI registry is only as good as the data it contains. Research towards the end of 2001
showed a snapshot of the Production UDDI registry with over 48% of the links invalid. This
kind of figure makes searching for information within the registry difficult, to say the least.

The V ASS can act as an independent filtering system, which only displays the UDDI registry
entries that are valid. It can do this by scanning through each UDDI registry entry daily and
making a note of the key values (unique values per UDDI registry entry) that are valid and
can be displayed within its own search area.

In addition the V ASS will allow additional advanced information searching which is
dependent on information gathered from other resources such as Web Service Research (see
below), Watching (see above), and Rating (see above). This will give the customer the ability
to make a much more informed decision as to which supplier or Web Service to choose and
also allow them to more closely scrutinize fewer remaining suppliers.

The V ASS contacts new UDDI registry entries and asks the organization to complete a series
of questionnaires. This means that first of all the V ASS has validated that the organization
mentioned in the UDDI registry actually exists (similar to how VeriSign works today with
digital certificates). It also means that the V ASS can categorize UDDI registry entries as well
as supplying potential customers with the ability to search on completed questionnaires.

209

www.manaraa.com

Mike Clark & Romin Irani

If a developer then wants to find a business, they can browse through independently verified
information with the understanding that a degree of checking and validation has already been
performed. For example, if a tax number is entered then the rating supplier can confirm with
the country of origin that this tax number is registered to the organization named in the
specified registry entry. Phone numbers, fax numbers, and e-mail information can be also
verified accordingly.

Research
A V ASS will independently research individual Web Services for suppliers. This will mean
creating "In The Spotlight" type articles, which systematically give customers the low-down on
specific Web Services. These articles will form a benchmark of how a Web Service performs,
expected response times, availability, security, and disaster recovery. Along with historic
information on how these values fluctuate, which may signify trends, we could ask for
example whether the availability of a Web Service is constant throughout the day?

Research will also be performed on suppliers to validate information already supplied within
UDDI, such as telephone numbers, fax numbers, and company details. In addition extra
information will be obtained which is not necessarily available within UDDI, such as company
size, time the company has been trading, last year's accounts, and names of directors.

The information contained within this research could also form the backbone to the Service
Level Agreement (see SLA Contracts below).

Access to this type of information also can form the basis for a degree of trust between the
customer and the Web Service provider. This will significantly shorten the timeline for
creating agreements, contractual or otherwise.

SLA Contracts
The topic of Service Level Agreements (SLA) is something which a specialist V ASS could
consider: as the VASS is separated from the UDDI registry it can simply state that it
administers and checks the SLA on behalf of each party. This maintenance of SLA Contracts
will require a V ASS to police a range of acceptable values that were agreed upon within the
SLA. Once one of these values was exceeded such as a response time becoming slower that
the agreed limit, all parties would be notified than the agreement has been broken.

The difference between the V ASS and an alert type system is that the V ASS actually gets a
signed copy of the original SLA; and is responsible for setting up and controlling its rules,
they are then responsible for making sure that both parties are notified once these rules are
breached. Notification will take the form of positive person-to-person interaction, not simply
sending off an e-mail message and hoping it arrives.

UDDI Newsletter
Newsletters from a VASS can offer an insight into the UDDI registry and also give a customer
first-hand and immediate knowledge of some of the following information on a weekly basis:

210

www.manaraa.com

Web Service Intermediaries

0 New Web Services being registered within UDDI.

o UDDI 'weather report' showing graphically the data consistency of the registry.

0 Specialist research performed on Web Services.

0 Ratings being changed for Web Services.

o News on significant changes to the UDDI registry.

All the information included in the newsletter would also be tailored (like web sites do now)
to a subscriber's own particular tastes. For example some subscribers will only want to see
ratings and Web Services for a specific category, such as Hospitals or Car Showrooms.

Who Pays the VASS?
The V ASS has two potential revenue streams.

The first is from the customer who wants to pay for value added information, but often the
quantities of users will have to be high to sustain any type of profitable company. It is also
notoriously difficult to create an Internet business from the ground up from customer
subscriptions unless you already have a critical mass of visitors and are seen as the primary
source of information. In addition this type of subscription type service often stifles growth
and in turn then affects the following revenue stream.

The second revenue stream is directly from the Web Service Providers. These providers will
pay for research on their Web Services and also for specialist services such as using the Alert
system as part of an SLA agreement between the provider and the customer.

It does seem that as the UDDI registry grows and potentially becomes unsustainable as a
single search engine, the V ASS that specialize in specific areas of the industry may well be
able to secure themselves a loyal and more willing-to-pay customer base. For example, a
customer based in the USA who is looking for a Web Service for sending SMS messages
would be far more willing to enter a contractual agreement with an American company than a
UK company. The reason is simply that if your agreement does not span country borders,
then it is far easier to take legal action against a Web Service provider. If you enter into a
commitment with a company in another country, however, then the legal costs alone will
probably far outweigh any costs in lost income due to a disruption in a Web Service.

It is likely that many V ASS companies will in fact concentrate on country- or industry-specific
information and therefore filter the Web Services and UDDI registry entries you see.

211

www.manaraa.com

Mike Clark & Romin Irani

Business Architecture for a Web Services Brokerage
SOAP and Web Services may hold center stage of the developing Web industry, as attention
focuses on toolkits and multi-platforms; however, this area of the industry is merely the tip of
an iceberg, which reaches much further than merely selling utility software. Yet, rather than
considering the overall architecture of a Web Services business model, the present trend
seems to be for companies to produce development tools for the sake of it, in a market that is
still maturing.

For the Web Services industry to succeed, it needs a solid architecture of support and sales
services. Both developers and customers need to know what niche they fall into, and how they can
interact with other parts of the industry. To fully comprehend the Web Services industry, we need
to understand the demarcations between sales, development, and hosting of Web Services.

A main concern in this early stage of the development process of Web Services is that there is
no benchmark industry to learn from. The Web Services industry is, possibly, most closely
related to that of ASPs (Application Service Providers). As developers get the tools to publish
functional Web Services as easily as one can create a HTML web page however, it is likely
that the Web Services market will soon overflow. Once Web Services become widely
adopted, the large number of RAD (Rapid Application Development) developers, using tools
such as VB, Delphi, C++, and the .NET platform will swamp the market with Web Services.

This section of the paper serves as a first stepping-stone for the Web Services brokerage
architecture. In it, we bring together the result of eighteen months of research in Web
Services, and practical knowledge of building a brokerage (http://www.salcentral.com/).

The term brokerage is used within many contexts; however, in the context of Web Services a
brokerage is best defined as an organization, or individual, whose primary activities include
the commercial ability to publish, promote, and sell SOAP-based Web Services.

Below are eleven distinct parts of the development process of a Web Service, grouped under
four categories: Creation, Publication, Promotion, and Selling.

Category

Creation

Publication

Promotion

Selling

212

Definition

The main players in this category are developers and designers, who
have the role to create functional Web Services.

This category is, primarily, constituted by organizations hosting Web
Services.

In this category, we find operators that search for and locate Web
Services, using general search techniques and Value Added Services.

Organizations dealing with accounts, sales, and customer contact
comprise this category.

www.manaraa.com

Web Service Intermediaries

Let us now look at an overview of how these categories fit into the architecture of a Web
Services Brokerage:

Category Actor

Creation Designer

Developer

Documentation

lnteroperability

Distributor

Publication Code Warehouse

Hosting

Data Warehouse

Promotion Directory

VAS

Accreditation

Description

Organization or individual who raises the
idea for a Web Service, and is involved in the
analysis and design of its functionality.

Organization or developer who builds the
Web Service.

In-house staff produces technical
documentation about a Web Service. The
documentation is then used for further in
house development, and for advising other
developers, outside the organization, on how
to use a particular Web Service.

A third-party company tests a Web Service's
interoperability and ease of use.

Organization who distributes the Web
Service, and controls the code warehousing,
hosting, and data warehousing of that Web
Service.

Third-party storage area for precompiled
code and scripts produced by the developer.
The version control also takes place here.

Organization that is hosting the compiled
Web Service.

Organization that holds the data used by the
Web Service.

Provides a means to locate a Web Service by
browsing or using a specialist Web Service
directory.

Value Added Services which enable customers
to pick Web Services using a variety of
information (see earlier for more details).

Web Services hosting and development
organizations will be given accreditation,
based on factors such as organization size and
availability of Web Services.

213

www.manaraa.com

Mike Clark & Romin Irani

·Category

Selling

Actor

Web Service
Auditor

Accounts

Description

Organization that constantly reviews and
checks the Web Services their customers are
using. With a Web Services Auditor, the
customer can make sure that the Web Service
conforms to the Service Level Agreement.

Organization that sells access to a customer
to be able to run a Web Service, allowing the
customer to purchase additional access, and
view the customer's current purchases.

In reality, many of these roles are performed by one organization; however, for the purposes
of understanding, we will consider them as distinct parts of the development and business
process of Web Services.

Creation
The creation of a Web Service will stay in the design, development, and documentation stages
(explained in the previous table) until its functionality and design are checked, reviewed, and
proved to be satisfactory. The same will happen in most other technical development
processes. Already at this early stage in the development process of a Web Service we seem to
move away from inherited methodologies and start to tread on new territory.

A Web Service provider can create a client frontend to a Web Service, so that other
companies will be able to use it. Interoperability within a Web Service is defined in two
distinct layers. The organization that consumes a Web Service is responsible for the layer that
controls the user interface. This organization does not have to be the Web Service provider.
The second layer is the Web Service, which when separated from the client frontend allows
the Web Service provider testing its Web Service to concentrate on business functionality
rather than aesthetics or developing a user interface.

This testing process can be performed outside the developing organization. An immediate
advantage of this is that third-party organizations, outside the development team of a
particular Web Service, can independently test that Web Service. As an organization's Web
Service can be made available to other organizations over the Internet, there will be
organizations specializing in testing unit functionality and interoperability. External testing, as
well as internal, secures high quality of Web Services.

The external organizations testing interoperability will be able to pass a Web Service through
a predefined series of tests such as data typing, response analysis, and high traffic, at the end
of which they will be able to produce a certificate of assurance that can be fed into a Service
Level Agreement (SLA). Without this type of predetermined testing, the customer has to rely
only on the developer's skill and judgment. The customer will, in future, have a choice. There
will be a definite connection between the most successful and most widely used Web Services
and their choice of methods for functionality testing.

214

www.manaraa.com

Web Service Intermediaries

The distributor has the most important role in the Creation stage; all information, consisting
of code and data, developed in the first parts of the development process, needs to be collated
into a single package. This package can then be fed into a Service Level Agreement, which
contractually declares that this Web Service performs a certain task. It should be said that not
all Web Services need an SLA- it's all about consumer demand.

Customers need to distinguish between many similar Web Services. Quality Assurance and a
Service Level Agreement help customers choose the right Web Services. With such quality
management, customers can trust the functionality of available Web Services, before trying
them out. Furthermore, the distributor is most suited to make choices about the hosting and
warehousing of specific Web Services.

Publication
In conversations held with organizations and venture capitalists, looking at the Web Services
industry, the one word most consistently raised is 'trust'. For the Web Services development
and publication system to work, one must be able to trust other organizations - which may
very well be situated in a completely different country - in order to let them administer and
back up one's own organization's web site. It's all very well creating an SLA, but what is it
really worth if we know that the cost of international litigation far outweighs the cost of
hurriedly obtaining another Web Service provider and adjusting our code.

Although some larger corporations may not have a problem with this, the majority of
organizations find international litigation an extremely risky venture, even if an organization
is in the right. We can expect some extremely detailed Service Level Agreements to be
enforced for critical Web Services, but this might not be enough.

One way of solving the problem is to take the original code, compiled Web Service, and data
storage, away from the publisher, and place it with trusted intermediaries whose only business
function is to administer Web Services. An intermediate organization holds the latest copies of
different aspects of a Web Service, independent from the original developer. It offers its
customer a secure and safe repository to store a snapshot of the Web Service code,
documentation, and all associated files. What makes this model work is that the
intermediaries:

D Are trusted by the developer, using a Contract and Service Level Agreement.

D Are trusted by the customer, using a Service Level Agreement.

D Store all the files separately from the developer.

This type of arrangement is similar to the legal and technical binding most web site owners
have today when other companies host their web sites. There is, usually, a Service Level
Agreement in place, indicating the type of service expected within the terms of your use of
that web hosting service.

215

www.manaraa.com

Mike Clark & Romin Irani

We would expect that web hosting organizations that host such services, for instance,
http://www.brinkster.com/, would only take on Web Services that have been run through
favored interoperability organizations. This would, in fact, serve to decrease the risk of
downtime and potential problems, such as those we have foreseen above, and create a close
and essential liaison between interoperability and web site hosting.

Another potential solution to the problem of enforcing a Service Level Agreement is to use
the services of a Web Services Auditor. A Web Services Auditor checks that an organization's
Web Services match their SLAs, and advise them of any changes in the standard of the service
as agreed within the original SLA.

Promotion
Searching for Web Services will become paramount over the next few years. It will be
important to have an appropriate method of tracking down the Web Services that we need,
out of the potentially hundreds of thousands of available Web Services.

Searching for Web Services includes two sections, which, although they can act
independently, are stronger when working collaboratively:

The Web Service directory (UDDI, http://www.xmethods.com/, http://www.salcentral.com/)
allows customers to track down a Web Service by using selection criteria. The directory works
like a search engine. It enables you to either enter search criteria, or to browse categorized
lists, to find a specific Web Service.

In addition to the Web Service directory, there seems to be a place for dynamic Web Service
searching tools, to interrogate and locate new Web Services. These would use a similar
technique to the current web site spiders, by moving along series of linked XML discovery
files, each one describing the location of various Web Services, and any further XML
discovery files. These tools would find new and changed Web Services, so that they can be
displayed within a specialist search engine or Web Service open directory.

VAS (Value Added Services), for example, at http://www.salcentral.com/ and
http://www.xmethods.com/, allow us to select Web Services not only by categorized lists or
searching tools, but also by giving additional analysis or general information that would
normally not be available. If we, for instance, find two Web Services that perform similar
tasks, we can, with VAS, get information about the response rate of each Web Service, and
availability over the last six months. This information allows a customer to make an informed
judgment as to which Web Service to choose.

Accreditation will, undoubtedly, serve to create a layered approach to Web Services.
Customers will make selections based on criteria such as who hosts a Web Service, and
whether the hosting company has any accreditation.

216

www.manaraa.com

Web Service Intermediaries

Selling
A major problem that the industry will face is the potential abundance of free Web Services.
Free Web Services, although providing excellent value for customers, undermine the
commercial prospects for the Web Services industry. It is clear that to enable a Web Service
provider to sell their services, they need to differentiate their Web Services from free ones.

To do this, an organization needs to use ascertained information such as accreditation and
Value Added Services to show that its Web Service is trustworthy. It must, of course, also
keep its charges down. Consumers would know that this Web Service has been checked by
independent organizations (as described above).

A third-party organization operates as a Web Services Auditor. It makes sure that a Web
Service functions in accordance with its Service Level Agreement. The Web Services Auditor
constantly checks and re-checks the Web Services it is looking after. If a Web Service fails to
reach the standard established in the SLA, the Web Services Auditor notifies its customer,
allowing them to take immediate action. The Web Services Auditor look out for new versions
of the Web Service being made available, and makes sure that response rates are consistently
in line with what is defined in the SLA.

Accounts are simply the money collectors of the Web Services world. They collect monthly or
per call, allowing the Web Service developer to use a technical layer to call into accounts, and
validate whether the user of a Web Service is allowed to use that Web Service. This technical
layer, which validates a user's use of a Web Service on behalf of the Web Service developer,
has many advantages:

0 The developer simply creates a Web Service, and attaches accounts functionality
later.

o The developer does not need to create a debiting web site to collect money.

o A customer can buy usage of Web Services from many different Web Service
providers through the same accounts engine, allowing them to have a central point
for credit card debiting.

o Customers can, at once, view transactions for all the Web Services they use, although
they belong to different organizations.

o Customers can easily see when use of a Web Service expires.

Even though this area is technically challenging, it seems that the major problems would be
those associated with the legal aspects of such transactions; for instance, whether the
organization that debits an account is liable for the Web Service's availability.

The clearest type of scenario would be one in which the organization dealing with the accounts
is simply an intermediary, and the Service Level Agreement is agreed between the customer and
the organizations previously identified as the code warehouse, hosting, and data warehouse.

217

www.manaraa.com

Mike Clark & Romin Irani

Conclusion
In this paper, we have looked at what a Web Service Intermediary is and the kind of services
that they provides. Web Services intermediaries are here to stay, and with appropriate
development of standards for them we should see tremendous activity on the part of
component developers and organizations to write intermediaries that seamlessly plugin to
Web Services networks, thereby providing value-added-services.

The second section of this paper has come off the back of the data integrity research
undertaken on the UDDI registry. This joint research (SalCentral and WebServicesArchitect)
is now publicly available at http://www.salcentral.com/uddi/default.asp. From this research it
is apparent that the UDDI is really simply a dumb registry; in many ways it forms the basis of
the data storage of the millions of pieces of information. To make this information useful,
however, someone (the VASS) needs to give the customer and Web Service provider an
element of control.

V ASS are already starting to appear such as Sal Central and XMethods. Over the long term,
however, some may be better suited to tailor their efforts more towards a specific industry
solution, such as a V ASS for the Hotel trade, which concentrates on Hotel based Web
Services or a VASS for a specific country. This change in effort will only appear however
when a critical mass of Web Services have appeared.

What happens now is significant, with the expected increase in the size of the registry.
Customers and Web Service providers may in fact become disillusioned with the degree of
data integrity and therefore the concern is that UDDI may in fact get a bad name for itself,
something that can be difficult to shake off.

In addition, some may have noticed the similarity between search engines and UDDI; in fact
we may be seeing the birth of the next stage of search engines. This will potentially make
existing search engines redundant and allow customers to search and select companies to
trade with using specialist filtered lists rather than in that huge cloud called the Internet. As
well as this, it seems that existing search engines may in fact be able to hook directly into the
V ASS search engine.

Finally, we examined what a Web Services Brokerage would include, and who would be
responsible for the elements within its architecture. We saw that there are four main areas of
activity surrounding a Web Service before it is first used by a customer (Creation, Publication,
Promotion, and Selling), and that at each stage a brokerage can be involved.

218

www.manaraa.com

Web Service Intermediaries

219

www.manaraa.com

Author: Romin Irani

• Global Electronic Business Standard

• How ebXML Works

• Industry Support~~~~

• The

d - ' ~ ·. -. . ' . . ' '
'

' ' ~ .
' . .

• - ' ' ,. • ' - L o

www.manaraa.com

An Introduction To ebXML

Introduction
Global electronic business is here to stay. In order for businesses, small and large, to exist in the
new economy it has become imperative that their systems communicate with each other. Over
the last few months, there has been tremendous activity by leading industry standards groups to
create processes that will enable inter-company business based on a common protocol.

In this paper, we shall take a look at ebXML, which is a global electronic business standard
that is sponsored by UNICEF ACT (United Nations Center For Trade Facilitation And
Electronic Business) and OASIS (Organization for the Advancement of Structural Information
Standards). We shall cover the following areas:

0 The need for a global standard for conducting electronic business.

0 What ebXML is and how it plans to facilitate global electronic business.

0 Current industry support for ebXML, that is the Standard Bodies, Industry Groups,
Vendors, and users.

0 What Web Services are and how they would help in accelerating ebXML
implementations.

www.manaraa.com

Romin Irani

Need for a Global Electronic Business Standard
In this section we shall take a look at how organizations today conduct electronic business
with each other, and discuss why they would benefit if there were a standard for their
interactions. We shall also look at what any such global electronic business standard would
need to consist of. This will set the background for the next section, when we describe
ebXML and how it could achieve the requirements that we set forth in a standard.

State of Things Today
Organizations around the world are going collaborative. It is no longer feasible for any one
organization to provide all services to a consumer; every day we hear of organizations
announcing partnerships to collaborate with each other in order to integrate each other's
business processes to cut costs, time, etc. One of the fundamental requirements is that of
interoperability between the electronic systems of partner organizations. But in today's world,
interoperability between partner systems (electronic business integration) is done not only in an
ad-hoc manner but also using a variety of approaches. Take a look at the diagram shown below:

Batch Files XML

Company C Company 0
(Small Organization) (Medium-sized Organization)

Batch Files

Company E
(Small Organization)

From the diagram, we can see that organizations are using different ways to conduct electronic
business. Some of the larger organizations conduct electronic business based on EDI
(Electronic Data Interchange) while some of the medium/small organizations still continue to
do electronic business primarily via the transfer of raw data.

222

www.manaraa.com

An Introduction To ebXML

Advantages of Having a Global Standard
As we see, organizations have not yet decided on a uniform way to do electronic business.
Doesn't ED I, though, provide for capture of common data-interchange formats and common
business processes in which they are used? Yes, but EDI has proved to be expensive due to the
high costs of setting up the network infrastructure to execute EDI transactions. Another big
reason for EDI not being popular among small-to-medium sized organizations is that there is
usually a dominant business entity that has tried to enforce proprietary integration approaches
on all the other partners. What this means is that EDI is meant for large corporations only,
unless someone can improve the position for small-to-medium sized organizations.

If we have a common global electronic standard based on open Internet standards, some of
the advantages that an organization would gain are as follows:

0 The cost of implementation would be substantially reduced since an organization
would now have to implement just one standard that their internal systems can
understand and communicate with.

0 An organization would have a variety of implementations/vendors to choose their
products from.

0 An organization would be able to gain more business since its business is now
exposed to several such organizations that use the same standard.

0 Such business will also be easier to integrate with due to each partner using the same
standards.

What Should a Global Electronic Business Standard
Consist of?

We now understand the importance of having a global electronic standard for business. But
what exactly should such a standard comprise? In other words, what should be some of the
common capabilities/issues addressed by a global electronic standard? It is important to
understand these points in order to fully appreciate how ebXML provides the same points
that we address here.

A global electronic business standard should definitely address the following:

0 Define common business transactions, such as sending a purchase order.

o Define common data-interchange formats; that is, messages in the context of the
above transactions.

0 Define a mechanism for listing your organization's capabilities and the business
transactions that your organization can perform in a common repository accessible to
all other organizations. In short, an ability to describe your company profile.

223

www.manaraa.com

Romin Irani

a Define a mechanism to allow organizations to discover companies and look up their
profile.

Q Define a mechanism to establish trust and credit worthiness standards among
participants.

Q Define a mechanism that allows two organizations to negotiate on the business terms
before they commence transactions.

a Define a common transport mechanism for exchanging messages between
organizations.

Q Define the security and reliability framework.

The ebXML Standard
ebXML (electronic business XML) is a global electronic business standard that is sponsored
by UNICEF ACT (United Nations Center For Trade Facilitation And Electronic Business,
http://www.unece.org/cefact/) and OASIS (Organization for the Advancement of Structural
Information Standards, http://www.oasis-open.org/). ebXML defines a framework for global
electronic business that will allow businesses to find each other and conduct their business
based on well-defined XML messages within the context of standard business processes which
are governed by standard or mutually-negotiated partner agreements. The ebXML standard
provides support for each of the points that we identified in the previous section, What Should
a Global Electronic Business Standard Consist of?

How ebXML Works
In this section we shall take a look at how a business would get itself ready to perform
business transactions with other organizations, based on the ebXML standard. Shown below
are three key phases in the order in which they are supposed to be executed towards meeting
that goal:

D Implementation phase.

D Discovery of partner information and negotiation phase.

D Transaction phase.

Implementation Phase
In this diagram, the first thing to note is the ebXML Repository. This repository contains
industry-defined Business Processes and Scenarios that are commonly applicable to most
business transactions. Companies can choose to extend these processes and add scenarios of
their own. The repository also contains profiles for businesses that have already registered
themselves for performing ebXML transactions with other trading partners.

224

www.manaraa.com

An Introduction To ebXML

Business Organization A

Request
Information

.,
Implement

ebXML
System

Publish
Business

Profile

Request ebXML Specs

Receive ebXML Specs

Protocol
Profiles ebXML Repository

So, what is an Implementation Phase? For Organization A, which is interested in doing
electronic business as per the ebXML standard, it consists of three steps as shown in the
diagram above:

1. Request Information.

2. Implement ebXML System.

3. Publish Business Profile.

The first step is to request the ebXML Specifications (Business Processes, Business Scenarios)
and understand them. Once the organization has digested the specifications, it decides which
business processes it would like to implement, following which it needs to implement a system
in-house based on those standards. It could either build a new system or build on top of an
existing legacy system. The whole idea is to expose a system that understands and talks
ebXML. There are several choices available today in the form of third-party applications that
can bring various components together and assemble an ebXML system.

Once the system is built, the organization is ready to conduct business with other
organizations. To facilitate that, it needs to publish its profile known as a Collaboration
Protocol Profile (CPP) to the ebXML Repository for other organizations to discover. A CPP
thus enables any organization to describe its profile; which business processes it supports, its
roles in those processes, the messages exchanged, the transport mechanism for the messages,
etc. Once the CPP is published to the ebXML Repository, it will allow other organizations to
access it and learn about the capabilities of Organization A. At any time, Organization A is
free to access its own profile, and review and make changes as necessary.

225

www.manaraa.com

Romin Irani

Discovery of Partner Information and Negotiation Phase
We saw in the previous phase how Organization A readied itself for electronic business on the
ebXML standard by first implementing an ebXML-compliant system in-house and then
publishing its profile, which described its capabilities to the ebXML Repository. In this next
phase, we shall look at how Organization A does electronic business with a partner,
Organization B.

Business Organization A

Request
Information on
Organization B

Request Organization B's Profiles, Scenarios

Receive Organization B's Info

Send
Partner
Agreement

Accept
Partner

Business
Organization B

Negotiate
Terms

ebXML Repository

Just as Organization A published its profile, Organization B has done the same. The first
step that Organization A takes is to retrieve Organization B's profile information from the
ebXML Repository. Once it has the profile, it is in a better position to understand
Organization B's capabilities; whether it supports the business processes that Organization
A is interested in, the messages to be exchanged, transport mechanisms, security and
reliability of the process, etc.

In the real world, businesses always negotiate terms and implement business contracts before
conducting any business. ebXML is no different in that regard, so the next step for
Organization A is to send a business contract called a Collaborative Partner Agreement
(CPA), in ebXML, to Organization B. The CPA will be a reflection of the profile (CPP) of
both the organizations. Both organizations can now collaborate on the CPA and refine it to
meet their business needs. Finally, both parties accept the agreement. During this phase, it is
very likely that key personnel from both organizations will meet in person and make
assessments before committing to an eBusiness relationship.

226

www.manaraa.com

An Introduction To ebXML

Transaction Phase
We are now ready to conduct transactions. A CPA was accepted in the previous phase and the
transactions can now be conducted in a predefined fashion where each business organization
plays a predetermined role in the transaction. The transactions consist of ebXML messages,
which are sent over the standard ebXML Messaging Service.

Business
Organization A

Send messages

Receive Messages

What ebXML Does Not Address

Business
Organization B

It is important to remember that though ebXML provides a common repository of business
models, business scenarios, messages, etc., it does not mandate how to implement them in
your system. As we saw in the previous section during the implementation phase, an
organization is free to implement the ebXML standards on its own or using a variety of
ebXML platforms/tools being provided by several vendors.

Current Industry Support
It is encouraging to note that ebXML has broad support not only from industry standard
groups and bodies, but also from organizations that have decided to provide ebXML support
in their systems. Several vendors are also actively involved in providing platforms and tools
that organizations can use today in making their systems ebXML-compliant.

Take a look at the list below showing the organizations that have endorsed ebXML:

Standards Bodies and Industry Groups

EBES

e centreUK

Korea Institute of Electronic Commerce

Open Applications Group

Open Travel Alliance

RosettaNet

Vendors and Users

Bind Systems

Care Data Systems

Commerce One

Data Access Technologies

Documentum

Edifecs

Table continued on following page

227

www.manaraa.com

Romin Irani

Standards Bodies and Industry Groups

Tradegate ECA

Vendors and Users

Fujitsu

Future Three/Synapz

IPNet Solutions

Korea Trade Network

PeopleSoft

Pointgain

Schemantix

Sterling Commerce

TIE Holding NV

Viquity

For a current list consult the following URL: http://www.ebxml.org/endorsements.htm.

Comments from Some organizations
The following quotes from vendors help to illustrate that support for ebXML is widespread in
the industry. These quotes are reproduced from the following web site, where more quotes
can be found:

http://www.ebxml.org/endorsements.htm#vendlist

RosettaNet
"RosettaNet plans to integrate support for the ebXML Messaging Services Specification in
future releases of RosettaNet's Implementation Framework (RNIF). While RosettaNet remains
committed to developing business process standards required to support the complex needs of
the high-technology industry, we also want to ensure interoperability across all supply chains.
To that end, we see tremendous value in ensuring our vertical supply chain standards are
supported by a horizontal, universally accepted messaging service, such as the one from the
ebXML initiative."

jennifer Hamilton
CEO
http://www. rosettan et. org/

Bind Systems
"The ebXML initiative has delivered a comprehensive set of specifications that enable
vendors such as ourselves to deliver solutions that meet the stringent demands necessary for
secure, yet open, collaborative electronic computing. We see ebXML as a pivotal component
enabling the delivery of 'business ready' Web Services, particularly through its support for
electronically enforceable partner agreements.

228

www.manaraa.com

An Introduction To ebXML

These agreements define both business and technology critical parameters that can then be
used to govern electronic interaction between partners. It is for these reasons, among many,
that ebXML plays a central role in our BindPartner Business Collaboration Platform. Overall,
an excellent achievement by the teams involved."

David Russell
CTO
http://www.bindsys.com/

Care Data Systems
"We see the ebXML standards as a sound basis for multi-entity integration that is fully
dynamic, yet secure, manageable and flexible. Therefore as we develop our tool set for zero
coding massive-scale multi-entity integration of person-centric data, we consider ebXML
support be way more than a 'cost of doing business' but rather a key enabler of excellent and
responsible 'consumer-centric' B2B."

jon Farme
Principal, LuoSys, Inc.
http://www.caredatasystems.com/

Accelerating ebXML - The Role of Web Services
Web Services are the new buzzword in programming circles. Almost everyday we hear of
vendors announcing support for Web Services in their products. We'll briefly recap what Web
Services are. A Web Service exposes software functionality, which can be accessed over the
Internet from a service publisher, and seamlessly incorporated into an application residing on
the service subscribers' computer. For example a Brokerage House (the service publisher)
would write a StockQuote Web Service (the functionality) that would be accessible to people
or organizations (the service subscriber) over the Internet.

In essence, then, a Web Service would help you expose certain functionality over the Internet
so that other clients can consume it. But what is so unique about this approach? After all,
haven't companies been doing business over the Internet for quite some time? Haven't they
been exchanging information with each other to facilitate business transactions? Aren't there
business exchanges, which bring buyers and sellers to a common Internet ground?

Yes, definitely! Before we answer how Web Services could be unique, let us first look at the
programming model for Web Services and some of the specifications/technologies that Web
Services work on.

229

www.manaraa.com

Romin Irani

Shown below is the Web Services programming model and the different players involved:

Discover

Service
Registry /Brokerage

Invoke

Publish

Service Provider

Let us try and understand the above diagram from the point of view of a sample organization
Teet, which is interested in providing a Web Service.

Teet is the Service Provider in the diagram. Teet is a Foreign-Exchange agency and is
interested in exposing certain functionality (foreign-exchange calculator service) in their
existing application as a Web Service. The Web Service in common parlance is described
by its Web Services Definition Language (WSDL) document. So the Service Provider,
Teet, creates the WSDL document for others (potential Service Consumers) to analyze
and determine how to invoke their service. Since Teet is keen that its service be
publicized to a wide audience, it is important that they publish this information in some
sort of a global registry.

This is where the third player in our diagram, the Service Registry/Brokerage, comes into
play. Essentially, they hold a repository of Web Services that other organizations can query
and determine if certain Web Services are of interest to them. One of the open standards to
publishing and querying information from a global registry is UDDI (Universal Description,
Discovery and Integration). The organization that is interested in using some of the external
Web Services completes the picture in the above diagram. They are known as the Service
Consumer, who scans brokerages/registries for Web Services that they may be interested in.
Once they are interested in a particular Web Service, they retrieve the WSDL document for
that Web Service. The WSDL provides them enough information in terms of endpoint URLs,
operations, messages, etc., such that they can invoke the Web Service over the Internet using
an open protocol like SOAP (Simple Object Access Protocol).

Thus, in essence, we use WSDL to describe a Web Service, we might use a UDDI API to
publish and query information from a UDDI Registry, and finally we invoke the Web Service
using SOAP.

230

www.manaraa.com

An Introduction To ebXML

Now, let us revisit the question of why Web Services are unique in their approach? In WSDL,
SOAP, and UDDI, we have open standards that have been accepted by almost all
organizations. Prior to these standards, vendors often propagated their own architectures that
were proprietary and expensive. Moreover, connecting to a new organization with different
systems needed integration work that was often time-consuming, difficult, and expensive. The
advent of these open standards makes the task of an organization very simple. Subscriber
organizations now have programmable access to the functionality, so that they can code it into
the applications that they develop. These open standards also go a long way towards ensuring
the platform independence that has plagued integration projects the world over.

Web Services - Benefits
From the discussion in the previous section, it should be easy to see how open standards like
WSDL, SOAP, and UDDI would benefit an organization that has decided to go down the
Web Services route.

D An organization can describe its services via WSDL and publish these to a global
UDDI registry or a Web Services brokerage. By publishing information about their
services to a global registry, organizations are able to reach a wider audience. This
should result in an increase in business opportunities.

D Integration costs between an organization's applications and their trading partners
can see a significant lowering. This is due to the fact that if both organizations have
already accepted and implemented the Web Services standards, by default they
would be able to communicate almost immediately with each other.

D For consumers of Web Services, it presents them with a large number of
organizations providing similar kinds of services. Consumers can now compare Web
Services of a similar kind, and in certain cases even try them out on a trial basis, all
via a few clicks since all these systems are communicating via SOAP.

Web Services- Current issues
In spite of the several advantages that Web Services offer us today, we need to look at the
current issues that early adopters are trying to address:

D Current tools from several vendors are focused more on the publish-lookup-invoke
programming model. For organizations involved in deeply collaborative and long
running transactions, it is essential that we see better support from Web Services
vendors in the areas of transactions, versioning, support for business processes, etc.

0 Since the subscriber organization uses the Web Services provided by the service
provider, it is important for the subscriber organization to pay attention to the response
times of the Web Service, the support setup of the service provider, etc. Mter all, the
Internet as a network has its deficiencies in terms of bandwidth, response time, security,
reliability, etc. It is also important to make alternative plans if the service provider
decides to close down its business or discontinue the particular Web Service.

231

www.manaraa.com

Romin Irani

CJ Despite the fact that vendors providing Web Services toolkits have accepted the open
standards, interoperability across vendor toolkits and platforms is still an issue.

Current Landscape
Web Services, since their advent, have had tremendous support from vendors that have been
introducing Web Services tools at a feverish pace. Several organizations with established
products have also announced full support for exposing their current implementations as a
Web Service. Organizations interested in implementing Web Services solutions in their
products have a wide variety of choices. Some of the vendors supporting Web Services are
listed below:

CJ Microsoft Corporation.

CJ IBM.

CJ BEA Systems.

CJ Sun Microsystems Inc.

CJ Oracle.

CJ Cape Clear.

CJ Shinka Technologies.

0 Silverstream Software.

Relationship Between Web Services and ebXML
(Implementation Phase)

In this section, we shall examine the functional architecture of ebXML, and see how the Web
Services programming model fits in. This will help organizations to understand better where
technologies like WSDL, UDDI, and SOAP fit within a standards specification like ebXML.
Alternatively, it could also help them in designing their own framework if need be.

The following diagram shows the Functional Service view of an ebXML system, which is
described in detail in the ebXML Technical Architecture Specification, available at
http://www.ebxml.org/. The diagram has been modified to help us understand it better. We
are interested in the functional service view because that is the view associated with
implementation details and in our case the implementation technologies that we have at hand
are WSDL, UDDI, and SOAP.

232

www.manaraa.com

Organization A

QJ
Register

Collaboration

. .
~-...................... ·······--·· :

ebXML Repository

Collaboration
Protocol

Agreement
CPA

An Introduction To ebXML

Organization B

Register
Collaboration

Protocol
Profile (CPP)

Let us first understand how the whole system functions, and at the right points we shall inject
the key words WSDL, UDDI, and SOAP, to understand where those technologies fit in.

You should recollect that the ebXML Repository is a collection of Business Processes and
Business Scenarios that apply to most businesses. Let us take our sample Organization A that
is interested in enabling its existing legacy application to confirm to ebXML standards. By
exposing this legacy application as a Web Service, it aims to be a provider of such a Web
Service to other organizations. Here is how an organization would go about doing this (we will
keep referring to the diagram):

1. Our Organization A downloads the ebXML Specifications (the Business Process
models and Business Scenarios) and understands them.

2. After our Organization A has understood the specifications, it determines which
Business Processes best fit the needs of its business. What this means is that an
organization can implement only a subset of the business processes that it can engage
in. At the same time, an organization can modify an existing Business Process if it
does not find a perfect fit with the Business Process defined in the specifications.

233

www.manaraa.com

Romin Irani

3. Once our Organization A has determined the Business Processes it is ready to
support, it starts building an application to support the ebXML standards. This
application in essence would define the Service Interfaces that other
organizations can invoke. It also describes the input messages that will be given
to the service and the output messages.

Our organization A already has an internal legacy application, so all we have do is to
create an implementation wrapper around it to help it understand ebXML messages.
Once we have built these interfaces and have all the details necessary for other
organizations to invoke our services, we package all that together in what is known as
the Collaboration Protocol Profile (CPP) in ebXML terminology. This Profile will then
have to be published to the ebXML Repository for other organizations to discover. If
any of the ebXML Specifications change in the future, the organization would have to
re-evaluate them and appropriately implement them in their application.

Based on the steps so far, let us identify the relations between the Web Services programming
model and ebXML.

In the Web Services programming model, WSDL was used to describe the Web Service. In
the ebXML specifications, a Collaboration Protocol Profile is used to describe the service. The
WSDL only had the service name, the parameters for that service and the endpoint to invoke
it. The CPP not only has those details but other important parameters like the role of the
organization in the context of that service, error-handling, and failure scenarios.

In essence, the Business Process Schema of ebXML would lend itself to being a much more
rigorous definition of a Web Service than simply a pure WSDL document. It not only
identifies the business process but also the roles that the organizations have to play, the
messages being exchanged, etc.

UDDI is used in the Web Services programming model to publish the services to a global
UDDI Repository. In ebXML we use the Registry Service Interface to publish the CPP of
the organization.

4. Now, along comes Organization B, who has followed exactly the same steps as us
in enabling their legacy application for ebXML. At the same time they are in
need of a particular service and are interested in discovering possible
organizations providing that. Let's assume for the sake of the example that our
Organization A does provide that service, and has published the details using
their Collaboration Protocol Profile (CPP).

The discovery of a business and downloading its CPP will be done via the Registry Service in
ebXML. One may be confused now whether to use UDDI to discover a service or to use the
ebXML Registry Service to do the same. UDDI is used to publish and discover Web Services,
while ebXML Registry Services provide not only that, but also information on business
processes, business documents, business profiles, etc.

234

www.manaraa.com

An Introduction To ebXML

In fact, they are quite complementary. Organizations can continue to use UDDI to inquire
about businesses in the global UDDI Registry. Those entries would then be used to refer to
ebXML Services in the ebXML Registry.

5. Organization B looks in the ebXML Repository for possible organizations
providing the service it wants, and downloads our CPP. The CPP gives them
details on what our service provides, the messages that flow into and out of our
service, and how to invoke the service.

6. The next step is for both organizations to come up with an agreement. This
involves key personnel from both organizations meeting in person and working
out the details. These details include the business process requirements of both
organizations, the messaging protocols to use, etc. Once an agreement has been
reached, the organizations come up with a Collaboration Protocol Agreement
(CPA) between them, which captures all of the agreed terms. The CPA, as you
see from the previous diagram, is really derived from the capabilities of both
organizations (described by the CPP). The CPA is agreed upon by both
organizations, and is then responsible for governing the transactions between the
two organizations.

7. The final step, as you might expect, is the actual transaction between the two
companies. The Payload (messages) is exchanged between the two organizations,
and they are governed by the CPA defined above. The messages are transported
in a standard manner using the secure and reliable ebXML Messaging Service.

In the Web Services programming model, once we have the WDSL for a particular Web
Service, we can invoke that Web Service using SOAP and HTTP. On the other hand, in
ebXML we need to use the ebXML Messaging service, which will provide a uniform way of
sending messages. The ebXML Messaging Services utilizes SOAP and HTTP (in fact it allows
for attachments too). The ebXML Messaging Service will thus provide a standard way to send
messages to your trading partner; it not only provides a secure and reliable transport
infrastructure based on SOAP and HTTP, but it also makes sure that the CPA governs the
business transactions.

Conclusion
This paper has taken a look at the need for a global electronic business standard and how the
ebXML standard is a step in the right direction. The ebXML standard as it stands today has
received widespread endorsement from leading standards groups, industry consortiums,
vendors and users. With the advent of Web Services and the open standards that they are
based on (WSDL, UDDI, and SOAP), it is strongly believed that Web Services would provide
the right kind of stimuli to help organizations take a big step towards implementing ebXML
standards in their systems and thereby reaching new levels of interoperability with partner
organizations.

235

www.manaraa.com

Author: Judith M. Myerson

• WebServices.Org

• IBM

• W3C

• Microsoft

www.manaraa.com

Web Services Architectures

With Web Services, information sources become components that you can use, reuse, mix,
and match to enhance Internet and intranet applications ranging from a simple currency
converter, stock quotes, or dictionary to an integrated, portal-based travel planner,
procurement workflow system, or consolidated purchase processes across multiple sites. Each
is built upon an architecture that is presented in this paper as an illustrated stack of layers, or
a narrative format.

Each vendor, standards organization, or marketing research firm defines Web Services in a
slightly different way. Gartner, for instance, defines Web Services as "loosely coupled software
components that interact with one another dynamically via standard Internet technologies".
Forrester Research takes a more open approach to Web Services as "automated connections
between people, systems, and applications that expose elements of business functionality as a
software service and create new business value."

For these reasons, the architecture of a Web Services stack varies from one organization to
another. The number and complexity of layers for the stack depend on the organization. Each
stack requires Web Services interfaces to get a Web Services client to speak to an Application
Server, or Middleware component, such as Common Object Request Broker Architecture
(CORBA),Java 2 Enterprise Edition (J2EE), or .NET. To enable the interface, you need
Simple Object Access Protocol (SOAP), SOAP with Attachments (SwA), andjava Remote
Method Invocation (RMI) along with other Internet protocols, principally Hypertext Transfer
Protocol (HTTP).

www.manaraa.com

Judith M Myerson

Although we have a variety of Web Services architectures, Web Services, at a basic level, can be
considered a universal client/server architecture that allows disparate systems to communicate
with each other without using proprietary client libraries, according to the W ebMethods
whitepaper, Implementing Enterprise WebServices with the WebMethods Integration Platform (March
2002, http://www.webmethods.com/content/1, 11 07,EnterpriseWebServices,FF.html). The
whitepaper points out that "this [architecture] simplifies the development process typically
associated with client/server applications by effectively eliminating code dependencies between
client and server" and "the server interface information is disclosed to the client via a
configuration file encoded in a standard format (WSDL.)" This approach allows the server to
publish a single file for all target client platforms.

For the purposes of this paper, we present the architecture stacks starting with the most
simple, proceed to the more complex ones, and then compare them.

More simple W ebServices. Org

The Stencil Group

More complex

IBM

W3C

After this, we will cover other architecture types from Microsoft, Sun Microsystems, Oracle,
Hewlett-Packard, BEA Systems, and Borland.

Based on initial findings or the current state of implementations, IBM's architecture looks to
be the most acceptable. All architectures will eventually come into one umbrella, as there is a
risk that if companies go away and keep on building their own extensions to the basic
architecture stack, the promise of Web Services could be lost. The IBM versions, current and
future, could serve as an industry-wide Standard Stack model, after W3C accepts new
standards resulting from, for example, the convergence of IBM's WSFL and Microsoft's
XLANG on workflow processes.

WebServices.Org
The following is the Web Services stack from WebServices.Org.

Layer

Service Negotiation

Workflow, Discovery, Registries

Service Description Language

238

Example

Trading Partner Agreement

UDDI, ebXML registries, IBM WSFL, MS
XLANG

WSDL!WSCL

www.manaraa.com

Layer

Messaging

Transport Protocols

Business Issues

Service Negotiation

Web Services Architectures

Example

SOAP/XML Protocol

HTTP, HTTPS, FTP, SMTP

Management, Quality of Service, Security, Open
Standards

The business logic process starts at the Services Negotiation layer (the top) with, say, two
trading partners negotiating and agreeing on the protocols used to aggregate Web Services.
This layer is also referred to as the Process Definition layer, covering document, workflow,
transactions, and process flow.

Workflow, Discovery, Registries
The stack then moves to the next layer to establish workflow processes using Web Services
Flow Language (WSFL) and MS XLANG, which is an XML language to describe workflow
processes and spawn them. Microsoft previously achieved recognition for WSDL by working
with IBM. History may repeat itself since IBM now has a similar technology to XLANG. In
April2001, IBM published WSFL. Gartner expected IBM and Microsoft to jointly agree to
submit a proposal to W3C to combine XLANG and WSFL by the end of 2001. Yet, the W3C
web site has not indicated whether it has received the proposal for consideration. If it did, the
proposal has not yet been posted on the web site Qune 2002).

WSFL specifies how a Web Service is interfaced with another. With it, you can determine
whether the Web Services should be treated as an activity in one workflow or as a series of
activities. While WSFL complements WSDL (Web Services Definition Language) and is
transition-based, XLANG is an extension of WSDL and block-structured based. WSFL
supports two model types: flow and global models. The flow model describes business
processes that a collection of Web Services needs to achieve. The global model describes how
Web Services interact with one another. XLANG, on the other hand, allows orchestration of
Web Services into business processes and composite Web Services. WSFL is strong on model
presentation while XLAN G does well with the long-running interaction of Web Services.

You may declare a Web Service as private, meaning that it cannot expose details of what it
does to public applications. You can create Web Services with the WebMe thod Attribute in
Visual Basic.NET, or with EJB wrappers for existingJ2EE applications in either the Internet
(public) or intranet (private) environment. You may declare them as public or private
methods when you code.

Among the software supporting WSFL is IBM W ebSphere Process Manager (previously
known as MQSeries Workflow) that automates business process flows, optimizes Enterprise
Application Integration (EAI) with people workflow, provides scalability, and complies with
the Workflow Coalition and multi-platform capabilities. MS XLANG is the language
implemented in BizTalk Server 2000 from Microsoft.

239

www.manaraa.com

Judith M Myerson

Web Services that can be exposed may, for example, get information on credit validation
activities from a public directory or registry, such as Universal Description, Discovery and
Integration (UDDI). The ebXML, E-Services Village, BizTalk.org, and xml.org registries and
Bowstreet's (a stock service brokerage)Java-based UDDI QUDDI) are other directories that
could be used with UDDI in conjunction with Web Services for business-to-business (B2B)
transactions in a complex EAI infrastructure under certain conditions. Web Services is still
primarily an interfacing architecture, and needs an integration platform to which it is
connected. Such an integration platform would cover the issue of integrating an installed base
of applications that cannot work as Web Services yet.

The first release of UDDI's Business Registry became fully operational in May 2001, enabling
businesses to register and discover Web Services via the Internet. Its original intent was to
enable electronic catalogues in which businesses and services could be listed. The UDDI
specification defines a way to publish and discover information about services. In November
2001, the UDDI Business Registry v2 beta became publicly available.

Hewlett Packard Company, IBM, Microsoft, and SAP launched a beta implementation of
their UDDI sites that have conformed to the latest specification, including enhanced support
for deploying public and private Web Service registries, and the interface (SOAP/HTTP API)
that the client could use to interact with the registry server. In addition to the public UDDI
Business Registry sites, enterprises can also deploy private registries on their intranet to
manage internal Web Services using the UDDI specification. Access to internal Web Service
information may also be extended to a private network of business partners.

Service Description Language
As you move further down the stack, you need WSDL to connect to a Web Service. This
language is an XML format for describing network services. With it, service requesters can
search for and find the information on services via UDDI, which, in turn, returns the WSDL
reference that can be used to bind to the service.

Web Service Conversational Language (WSCL) helps developers use the XML Schema to
better describe the structure of data in a common format (say, with new data types) the
customers, Web browsers, or indeed any XML-enabled software programs can recognize. This
protocol can be used to specify a Web Service interface and to describe service interactions.

Messaging

Now, we get to the Messaging layer in the stack where SOAP acts as the envelope for XML
based messages, covering message packaging, routing, guaranteed delivery, and security.
Messages are sent back and forth regarding the status of various Web Services as the work
progresses (say, from customer order to shipping product out of the warehouse).

240

www.manaraa.com

Web Services Architectures

Transport Protocols
When a series of messages completes its rounds, the stack goes to its penultimate layer: the
transport layer using Hypertext Transfer Protocol (HTTP), Secure HTTP (HTTPS), Reliable
HTTP (HTTPR), File Transfer Protocol (FTP), or Standard Mail Transfer Protocol (SMTP).
Then, each Web Service takes a ride over the Internet to provide a service requester with
services or give a status report to a service provider or broker.

Business Issues
Finally, the Business Issues row in the table lists other key areas of importance to the use and
growth of Web Services. Without consideration to these points, Web Services could quickly
become objects of ridicule.

The Stencil Group
Now let's take a look at the Stencil Group's Web Services technology stack. It is similar to that
of WebServices.Org with three exceptions:

1. The WebServices.Org stack does not divide the layers into emerging and core
components. Not doing so could confuse the reader as to which standards are
emerging. What is now an emerging standard could become a core standard at a
future date.

2. The Stencil Group does not apply Management, Quality of Service, Open
Standards, and Security to any layer. The reader could get the wrong impression
that they are proprietary and treated as not important. When this happens, the
reader will opt for another architecture stack that has these features.

3. The Stencil Group starts the stack with undefined business rules while
WebServices.Org begins with a clearly defined business process such as service
agreement. The reader could get confused on what undefined business rules are,
and how many would eventually be defined.

Layer Type

Other Business Rules (undefined)

Web Services Flow Language (WSFL)

Universal Description, Discovery and Integration (UDDI)
Emerging
Layers

Web Services Description Language (WSDL)

Simple Object Access Protocol (SOAP)

Extensible Markup Language (XML) Core Layers

Common Internet Protocols (TCP/IP, HTTP)

241

www.manaraa.com

Judith M Myerson

IBM
The IBM Conceptual Web Services stack is part of their Web Services Conceptual Architecture
(WSCA) 1.0 (http://www-4.ibm.com/software/solutions/Webservices/pdf/WSCA.pdf). It is
presented in a slightly different way than that of the first two stacks, by starting with Web
Services tools and then showing what each layer is used for.

Tools Layer

TP A (Trading Partner Service Negotiation
Agreement)

WSFL Service Flow

UDDI+WSEL Service Service Endpoint
Description Publication Description

(Dynamic
UDDI)

Service
Directory
(Static
UDDI)

WSDL Service Interface

Service Implementation

SOAP XML-Based Messaging

HTTP, FTP, email, MQ, IIOP Network

Quality of Service, Business Issues
Management, Security

The IBM Web Services stack does not show WSCL and ebXML, included in the
WebServices.Org stack. It associates the Network layer with WebSphere MQ (previously
IBM MQSeries) messaging systems and the Internet Inter-ORB Protocol (IIOP) -a protocol
CORBA uses to transmit data, information, and messages between applications. They do
not appear in either that of WebServices.Org or The Stencil Group. IBM considers WSDL
as a description of the service endpoints where individual business operations can be
accessed. WSFL uses WSDL for the description of service interfaces and their protocol
bindings. WSFL also relies on WSEL (Web Services Endpoint Language), an endpoint
description language, to describe non-operational characteristics of service endpoints, such
as quality-of-service properties.

242

www.manaraa.com

Web Services Architectures

Together, WSDL, WSEL, and WSFL provide the core of the Web Services computing stack.
IBM perceives UDDI in two categories: static and direct. Static UDDI refers to the Service
Directory established after applying WSFL to the Service Flow, while dynamic UDDI pertains
to the Service Publication of directory items. Similar to the WebServices.Org stack, the IBM
stack applies QoS, management, and security to all layers.

As of May 2001, IBM announced software and tools that enable businesses to create, publish,
securely deploy, host, and manage Web Services applications, using the IBM Web Services
stack as the framework. They include W ebSphere Application Server Version 4.0, W ebSphere
Studio Technology Preview for Web Services, WebSphere Business Integrator, DB2 Version
7.2, Tivoli Web Services Manager (to monitor performance of all aspects of the Web Services
environment), and Lotus software suite (to enable Web collaboration, knowledge
management, and distance learning). WebSphere was originally the collective name of IBM's
J2EE application server family. It has since been stretched to include most of their
middleware and application development offerings, such as MQSeries Workflow (now known
as WebSphere Process Manager). IBM currently offers a Web Services ToolKit (WSTK) to
help in designing and executing Web Service applications, and enabling them to find one
another and collaborate in business transactions without programming requirements or
human intervention.

W3C
The W3C Web Services Workshop, led by IBM and Microsoft, has agreed that the
architecture stack consists of three components: Wire, Description, and Discovery.

Wire Stack
The following table shows what layers constitute the Wire Stack.

Other "extensions"

Attachments Routing

Security Reliability

SOAP

XML

As you will notice, this Wire Stack has extensions to two layers: SOAP and XML. This means
whenever SOAP is used as the envelope for XML messages, they must be attached, secure,
reliable, and routed to the intended service requester or provider. In the stacks of other
organizations, SOAP and XML are not treated as "extensions." IBM, for instance, refers to
SOAP as a tool for its stack layer, "XML-Based Messaging."

243

www.manaraa.com

Judith M Myerson

Description Stack
The Description Stack, the most important component, consists of five layers:

Business Process Orchestration

Message Sequencing

Service Capabilities Configuration

Service Description (WSDL) Service Interface

WSDL
Service Description

XML Schema

This stack starts with orchestration of business processes from which the messages are
sequenced, depending on how service capabilities are configured. Whatever comes out of the
proposal on combining WSFL and MS XLANG that IBM and Microsoft submitted to the
W3C last year, will be the tool for the Business Process Orchestration Layer. What needs to
be resolved is to consider what parts of WSFL and MS XLANG are more open than the other:
transition-based versus block-structured based control flow, and extending versus
complementing WSDL among others.

The Service Capabilities Layer is similar to IBM's WSEL as mentioned in IBM WSCA 1.0 and
WSFL 1.0 {http://www-4.ibm.com/software/solutions/Webservices/pdf/WSFL.pdf). Like IBM,
the W3C uses WSDL to describe service interface and service implementation, neither of
which is explicitly highlighted in other stacks. WSDL may use a hefty chuck of XML Schema
and takes advantage of SOAP/HTTP bindings to WSDL. SMTP, Reliable HTTP (HTTPR),
and HTTP GET are other possible bindings that could be used.

Discovery Stack
As the name implies, the Discovery Stack involves the use of UDDI, allowing businesses
and trading partners to find, discover, and inspect one another in a directory over the
Internet, as follows:

Directory {UDDI)

Inspection

The Inspection Layer refers to WSIL {Web Services Inspection Language) and WS-Inspection
specifications. Please refer to the Microsoft section opposite for more information on WSIL.

244

www.manaraa.com

Web Services Architectures

Putting all three stack-components together, we have the Architecture Stack.

Wire Stack Other "extensions"

Attachments Routing

Security Reliability

SOAP

XML

Description Business Process Orchestration

Stack Message Sequencing

Service Capabilities
Configuration

Service Description (WSDL) Service Interface

WSDL
Service Description

XML Schema

Discovery Directory (UDDI)

Stack Inspection

The remaining part of this paper covers Web Services architectures from Microsoft, Sun,
Oracle, BEA Systems, Hewlett-Packard, and Borland.

Microsoft
On May 24, 2000, Microsoft announced it had posted three additional specifications on its
XML Web Service Web site: XLANG, SOAP-Routing, and Direct Internet Message
Encapsulation (DIME) protocol, a method of packaging up attachments in SOAP messages.
SOAP-Routing along with DIME, however, were not included in .NET My Services (formerly
codenamed "HailStorm"). This was because the Global XML Web Services Architecture
(GXA) replaced SOAP-Routing with WS-Routing which supports one- and two-way
messaging, including peer-to-peer conversation and long-running dialogs.

The global architecture builds upon the foundation of baseline specifications - SOAP, UDDI,
and WSDL among others. In April2001, Microsoft and IBM co-presented their vision of this
architecture to the W3C Workshop on Web Services. Both vendors contributed to the
development and implementation of the W3C Web Services Architecture Stack - more
complex than their own versions.

245

www.manaraa.com

Judith M Myerson

Layer Type

WS-Inspection, WS-License, WS-Referral, WS- Global Architecture
Routing, WS-Security

UDDI, WSDL, XML, SOAP Baseline Architecture

The GXA is modular, meaning that you can use one specification with another to address a
set of specific requirements. For example, WS-Referral does not explicitly specify security,
but rather relies on other specifications in the architecture to enable the routing strategies
used by the SOAP nodes in a message path.

Other specifications for the global architecture are:

0 WS-Inspection assisting in the inspection of a site for available services. Due to the
decentralized nature of Web Services, this specification doesn't work well if the
communication partner is unknown. In such cases, you would be better off with UDDI.
This specification (also known as WSIL) was announced by both IBM and Microsoft to
the W3C in November 2001. It is another service discovery mechanism (http://www-
1 06.ibm.com/developerworks/library/ws-wsilover/index.html) and is complementary
to UDDI (http://www.webservicesarchitect.com/content/articles/modi01.asp).

0 WS-License describing a set of commonly used license types and how they can be
placed within the WS-Security "credential" tags, such as X.509 certificates and
Kerberos tickets.

o WS-Routing referring to a simple, stateless, SOAP-based protocol for controlling the
route of SOAP messages in an asynchronous manner over a variety of transports
such as TCP, UDP, and HTTP.

o WS-Security describing enhancements to SOAP-messaging to provide three
capabilities: credential exchange, message integrity, and message confidentiality,
each of which you could use by itself or in combination with another as a way of
contributing to a security model. For more details, see
http://msdn.microsoft.com/ws/2002/04/Security/.

Additional specifications will become available as Microsoft releases them for public review.

To accommodate the architecture, Microsoft offers the .NET Framework as a platform for
building, deploying, and running XML Web Services and applications. It allows a Web
Service consumer to send and receive information in a loosely coupled manner, including a
description of the Web Services that it and other consumers offer. SOAP is supported by
XML Schema Data types (XSD), WSDL, XML, and HTTP.

246

www.manaraa.com

Web Services Architectures

As part of the Microsoft .NET initiative, Microsoft provided a user-centric architecture and a
set of XML Web Services, collectively called Microsoft .NET My Services. Using .NET
Passport as the basic user credential, the .NET My Services architecture defined identity,
security, and data models that are common to all services and can help orchestrate a wide
variety of applications, devices, and services - all in one basket. The initial set of .NET My
Services included:

o .NET Profile. Name, nickname, special dates, picture, address.

o .NET Contacts. Electronic relationships/address book.

0 .NET Locations. Electronic and geographical location and rendezvous.

0 .NET Alerts. Alert subscription, management, and routing.

0 .NET Presence. Online, offline, busy, free, which device(s) to send alerts to.

0 .NET lnbox. Inbox for items like e-mail and voice mail, including existing mail systems.

o .NET Calendar. Time and task management.

o .NET Documents. Raw document storage.

o .NET ApplicationSettings. Application settings.

o .NET FavoriteWebSites. Favorite URLs and other web identifiers.

0 .NET Wallet. Receipts, payment instruments, coupons, and other transaction records.

0 .NET Devices. Device settings, capabilities.

0 .NET services. Services provided for an identity.

o .NET Lists. General purpose lists.

0 .NET Categories. A way to group lists.

Since the first publication of this paper, however, Microsoft has rethought its strategy. The
move is away from providing .NET My Services as a global set of Web Services, and towards
being a solution internal to a company.

Sun Microsystems
Sun Open Net Environment (Sun ONE) is an open framework to support "smart" Web
Services, and in which the Java 2 Platform Enterprise Edition (J2EE) platform plays a
fundamental role. The Sun ONE Web Services developer model shows how developers can
build Web Services, using XML, servlets,JavaServer Pages, EJB architecture, andjava
technologies as shown overleaf. Note that EJB wrappers allow existing applications to become
Web Services.

247

www.manaraa.com

Judith M Myerson

Component Purpose

Java API for XML Processing Provides a Java interface to DOM, SAX, and XSLT.
(JAXP)

Java API for XML Binding Provides a way to bind XML data to Java code. A
(JAXB) developer uses JAXB to compile XML schema

information into Java objects. At runtime,JAXB
automatically maps the XML document data to the
Java object, and vice versa.

Java API for XML Messaging Provides a Java interface to XML messaging systems,
(JAXM) such as the ebXML Message Service, XMLP, and

SOAP

Java API for XML Registries Provides aJava interface to XML registries and
(JAXR) repositories such as the ebXML Registry and

Repository, and the UDDI Business Registry.

Java API for XML-based RPC Provides direct support for an RPC programming
(JAX-RPC) convention for XML messaging systems, such as

SOAP and XMLP.

The Sun ONE architecture recommends four types of XML-messaging systems: SOAP, SwA
(SOAP with Attachments), ebXML Message Service, and XML Protocol (XMLP). ebXML
Message Service extends Sw A by adding a QoS network that ensures reliable and secure
message delivery. An ebXML message can transport any number of XML documents and
non-XML attachments.

Layer Type

JAXP,JAXB,JAXM,JAXR,JAX-RPC, Java Technologies
servlets,JSP, and EJB

UDDI, ebXML Registries

WSDL Service Description Language (may be
automatically generated depending on a
partner module)

SOAP, SwA, ebXML, XMLP XML-Messaging Systems

248

www.manaraa.com

Web Services Architectures

A Web Service example is myServices.ONE that provides a shopping basket spanning
multiple sites. Created using iN sight for Forte for Java, this Web Service allows Internet
shoppers to view and update their purchases in one basket. Making up myServices.ONE are
three basic services:

0 myldentity providing identification across the sites. This identifies the users uniquely
across multiple sites, so they will not log in repeatedly as they go from one site
(http://www.barnesandnoble.com/) to another (http://www.sears.com/).

o myBasket consolidating items from multiple sites. Users can add items to the basket
from different sites and view the consolidated list of all items in a central, secure
basket.

o myJeeves automating the purchase process across various domains. It handles the
actual payment and shipping details.

Oracle
The core of the Oracle9iWeb Services Framework is the Web Service Broker, aJ2EE
execution engine deployed in the Oracle9i Application Server. Application developers can
access the engine using the Oracle Web Services java client APis that provide a level of
abstraction over the communication protocol to connect to the execution engine (direct java
method calls, PL/SQL calls, HTTP, HTTPS, orJMS (Java Message Service) messages).

Oracle's Web Services framework is based on open industry standards, defining four
requirements: description, discovery, request/response, and transport.

Requirement Standard Remarks

Description WSDL All service attributes, including input/output
parameters, version, provider, and copyright/licensing
information, are stored in registries. The Oracle9i
Web Services framework supports two registries:

0 Service Registry: stores service definitions
(called service descriptors).

0 Application Profile Registry: stores
information about the consumer
applications that are allowed to access
services.

Table continued on following page

249

www.manaraa.com

Judith M Myerson

Requirement Standard Remarks

Discovery UDDI Search registries for services with the desired

LDAP
characteristics.

0 Development-time: Service descriptors can
be published in UDDI registries (natively
or in WSDL).

0 Run-time: Service descriptors can be stored
in Oracle Internet Directory (OID) for
security, centralized management, and
lookup (via LDAP).

Request/ XML Request and response formats are defined per service
Response in XML documents and XML Schema documents.

Transport SOAP Send requests to services and receive responses.

ICE (See Note 1)
Oracle9 i Web Services framework includes adapters
for common transport protocols and supports custom
adapters.

Note 7: Information and Content Exchange. A syndication protocol that standardizes interaction
between information publishers and subscribers via the Web.

The illustration opposite shows how various parts of the Oracle9 i Web Services framework
are related to one another. Starting in the upper-left, Consumer Applications send XML
Service Requests to the Web Services Client Library, using SOAP and ICE. The Client
Library provides java and PL/SQL interfaces to the Web Services Broker. Interacting with the
Broker for Web Services and Database Services is accomplished through SOAP, java
reflection, or JDBC via software components called adapters. When the Broker returns results
to the Services, it dispatches them to the Consumer Applications for display to end users.
Software components called transformers allow the framework to support several output
formats, including HTML pages, and pages formatted for wireless and mobile devices:

250

www.manaraa.com

Consumer
Applications

XML Service
Request

Web Services Architectures

XML Service
Response

Web Services Java Cl ient Library

Web Services Broker
(J2EE Connector)

SOAP Java JDBC
Reflection

HTTP
Service
Registry

The Oracle9i Web Services framework insulates developers from the complexity of interacting
with multiple information sources, protocols, and delivery channels. It is component-based to
maximize reuse. It includes tools for creating, managing, and monitoring services.

251

www.manaraa.com

Judith M Myerson

The following figure gives a developer's view of how various parts of the framework interact:

Web Services Broker

Working clockwise from the top left, the steps are:

252

1. A Service Provider can start by reusing an existing web or database application -
ideally, one that returns results in XML. If not, Oracle9i Web Services includes
utilities that map HTML and other data sources to XML. Oracle9 i Web Services
also includes a Creation Assistant that generates a simple service from a web page.

2. Next, a Service Administrator uses a tool of choice (command-line utility or graphical
Oracle Enterprise Manager) to register the service, making it available to consumers.

3. Service Consumer Applications query the Service Registry to get the data required
to find and invoke a service. Data about Service Consumer Applications, including
access privileges, is stored and maintained in the Application Profile Registry.

4. Then, the Service Consumer Application interacts with the Web Services Broker,
which uses an input transformer, if needed, to convert the Consumer's request to
a format it can use internally. When the service returns a result, the Web Services
Broker applies an output transformer, if needed, and dispatches the data to the
Service Consumer application. The Service Consumer Application can display
the data to end users, or use it in the flow of some business logic.

www.manaraa.com

Web Services Architectures

5. The Web Services Broker invokes the service via an adapter appropriate for the
service's protocol (HTTP, SMTP, etc.).

Hewlett-Packard
In May 1999, HP was the first to develop a Web Services platform under the name E-speak.
Hewlett-Packard kept quiet as Microsoft, Oracle, and IBM responded, until March 2001 when
it put a large number of software products together in two groups. The first of these groups
was the NetAction suite, which contained products for Web Services, with 25 new products,
including Bluestone. Bluestone software, which runs transactions for e-commerce, took an
important role. Also brought under NetAction were E-speak, Chai (HP's version of embedded
Java), and Open Call, an API bundle for call centers, and HP Security. Analysts say HP has
possibilities as a major player.

The Hewlett Packard Web Services Platform supports both Web Service interactions and Web
Service implementation bindings via an architecture that addresses three key infrastructure
services, as shown in the following illustration of the HP Web Services Platform. In addition,
supporting functions that handle transactional semantics, security, availability, scalability,
monitoring, and management are provided by the underlying HP Total-e-Server platform.

Application Processing Security

(Workflow, servlet, EJB,JSP, Cocoon) Transactions

Interaction Control Availability

(Envelope Processing, Dispatch to Application Components) Scalability

Messaging Monitoring

(Transports, Listeners, Content Format Handlers) Management

Tools

BEA Systems
BEA Systems develop Web Services on the J2EE platform using the SOAP protocol. J2EE
applications expose EJBs andJMS destinations as Web Services. Private registries (possibly
based on UDDI) are used to integrate with partners by some applications. Typical enterprise
application integration is based on theJ2EE Connector Architecture QCA). Shawn Willet,
principal analyst at Sterling, commented, "The JCA technology is a bit immature and a lot of
enterprise users may want to go with a ... more mature tool". BEA views their application
platform as an integration platform.

253

www.manaraa.com

Judith M Myerson

Unlike other vendors, BEA (and Borland) uses Business Transaction Protocol (BTP) -an
XML dialect for orchestrating inter-enterprise business transactions that address the unique
business-to-business (B2B) requirements. This protocol is stack-agnostic, so it can be easily
implemented in conjunction with other standards such as ebXML or SOAP. For example, a
header can be added to the ebXML message envelope to carry the transaction context defined
byBTP.

BEA offers two types of Web Services: remote procedure call (RPC)-style and message-style.
The first type supports simple Web Services (like stock quotes), is synchronous, and is often
given by vendors, while the second type is targeted toward a loosely coupled, asynchronous
model and is a key requirement for enterprise-class Web Services.

RPC-5tyle Web Services
You use a stateless session EJB to implement an RPC-style Web Service. When clients, for
example, invoke the Web Service specific to a service, they send parameter values to the Web
Service, which executes the required methods, and then sends back the return values. RPC
style Web Services are synchronous, meaning that when a client sends a request, it waits for a
response before doing anything else. This means that they are tightly coupled with a
resemblance to traditional distributed object paradigms, such as RMI and DCOM. One
example is a computer screen showing a stock quote ticker with an input block, with which
the user can get current information on a list of stock during trading hours.

Message-style Web Services
This type of Web Service is loosely coupled and document-driven rather than being
associated with a service-specific interface. When a client invokes a message-style Web
Service, the client typically sends it an entire document, such as a purchase order, rather than
a discrete set of parameters. The Web Service accepts the entire document, processes it, and
may or may not return a result message, such as a manager's acknowledgment of the order.
This means the client does not wait for the response before it can do something else. It can
wait for hours, days, or even weeks unless the system has some kind of mechanism to alert the
manager to respond within a time frame.

You can also use a message-style Web Service to request a record with the information you
need all at once in an XML message - last name, first name, social security number, and so
on. This coarse-grained communication example is far better than making three or more
separate calls to get the record.

Borland
Borland offers cross-platform development by, for example, using Delphi 6 to create Web Services
running on liS for Windows and then take that same code to Linux, recompile using Kylix 2, and
deploy on Apache Web servers. The Internet protocols they use to expose internal Web Services
and access external Web Services include: SOAP, WSDL, UDDI, BTP, and ebXML.

254

www.manaraa.com

Web Services Architectures

Both Delphi 6 and Kylix 2 provide three SNAP™ families you need to build and deploy Web
Services. They are:

o Bi;:Snap that simplifies e-business integration by creating and using XMLISOAP
based Web Services. It interacts with Microsoft's BizTalk.

0 WebSnap a component-based web application development framework that supports
leading Web Application Servers, including Apache, Netscape, and Microsoft
Internet Information Services (liS).

o DataSnap a Web Service-enabled database middleware component that enables any
client application or service to easily connect with any major database over the
Internet. It supports all major database servers such as Oracle, MS-SQL Server,
lnformix, IBM DB2, Sybase, and lnterBase. Client applications connect to DataSnap
servers through industry-standard SOAP/XML HTTP connections over the Internet
without bulky database client drivers and complex configuration requirements;
DCOM, CORBA, and TCP/IP connections are also supported.

Conclusion
The W3C Architecture Stack is complex as compared to the stacks presented by other
organizations. While this stack is theoretically correct, it may be inconsistent from a customer
or end user's perspective. The W3C's Wire Stack is at the top; however, the SOAP/XML
protocols are usually found at the bottom stack layer, such as in the WebServices.Org
Transport Protocols layer, the Stencil Group's Common Internet Protocols layer, and IBM
Web Services Network. While the W3C's Discovery Stack is at the bottom, UDDI is at the
second layer for WebServices.Org, The Stencil Groups third layer and IBMs third layer that
combines with WSEL. While the WebServices.Org Business Processes and The Stencil
Group's Other Business Rules are similar to the Business Process Orchestration in W3C's
Description Stack, IBM's stack lacks a layer on business processes. IBM, a primary member of
the W3C Web Services Workshop, presented its simpler version, and recently included TPA
as its top layer.

Microsoft, another primary member of the workshop, presented the GXA apparently derived
from the W3C Architecture Stack. Its global architecture is restricted to Microsoft operating
systems, while in Sun's ONE Architecture Web Services run on a wider range of platforms. In
the near future, we will see .NET on non-Microsoft operating systems as a result of the
ongoing efforts to make .NET Web Services available to non-Microsoft users in all five
categories: consumers, service providers, independent software vendors, managed service
providers, and corporate application developers. When this happens, vendors' future market
share of Web Services may change today's landscape. Around that time, an architecture stack
(similar to IBM's) will rise on the horizon - as the industry-wide standard.

255

www.manaraa.com

Authors: J. Jeffrey Hanson, with additional material by Chanoch Wiggers

• Description

• Implementation

• Publishing, Discovery, Binding

• Invocation and Execution

www.manaraa.com

.NET and J2EE, a Comparison

Introduction
Web Services is the term being used to describe some of the technologies for solving the
problems of integrating applications across the enterprise and between disparate companies
over the Internet. Web Services are also being described as the concepts and technologies for
delivering services and content to any Web-enabled client or device. A simplified attempt at
defining Web Services generically might be as follows:

Web Services are URI-addressable resources that use existing Internet
infrastructures and protocols to allow applications, services, and devices to discover
them, connect to them, and execute their business logic using remote method calls.

Sun is touting its Java Web Services Developer Pack
(http://java.sun.com/webservices/webservicespack.html) as its java 2 Platform, Enterprise
Edition (J2EE) toolset for wrapping XML-based Web Services technologies such as SOAP, UDDI,
ebXML, and WSDL with Java objects and interfaces. At the same time, Microsoft is working on its
.NET platform. Among other things, .NET is designed to facilitate the development of
interoperable Web Services. As usual, Microsoft is presenting a comprehensive set of development
tools to accommodate this new technology. Among these is the SOAP 2.0 Toolkit
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/soap/htm/kit_intro_19bj.asp).
This toolkit provides a broad range of SOAP support tools such as a component that maps Web
Service operations to COM-object method calls. Similar facilities have been built into the .NET
Framework from the start, and these can be unleashed using Visual Studio .NET.

Offerings from other sources include the Apache SOAP project and IBM's Web
Services Toolkit.

www.manaraa.com

J. Jeffrey Hanson

The Apache SOAP project (http://xml.apache.org/soap/) is an open-source, java-based
implementation of the SOAP v 1.1 (http://www. w3.org/TR/SOAP) and SOAP Messages with
Attachments (http://www.w3.org/TRISOAP-attachments) specifications injava. Apache
SOAP can be used as a client library to invoke Web Services or as a server-side tool to
implement Web Services.

IBM's Web Services Toolkit (http://alphaworks.ibm.com/tech/webservicestoolkit) provides a
run-time environment and examples to design, implement, and execute Web Services on any
operating system that supports java 1.3 or above. The toolkit provides a Web Services
architectural blueprint, a private UDDI registry, some sample programs, some utility services,
and tools for developing and deploying Web Services. The toolkit also includes a Web
Services client API that can be used to access a UDDI registry.

Web Services Overview
The Web Services model as it stands attempts to allow potentially unrelated services to be
dynamically combined, in a loosely coupled manner over a distributed network. Web Services
encourages developers to evolve to a services-based model.

Web Services are currently concerned with four basic challenges:

1.. Service Description.

2. Service Implementation.

3. Service Publishing, Discovery, and Binding.

4. Service Invocation and Execution.

Current technologies are solving these challenges by:

258

5. Describing Web Services using the Web Services Description Language (WSDL).

6. Using XML as the common language for Web Service communication. XML is
ubiquitous throughout all aspects of Web Services. Web Services can be
implemented in any programming language that can read and write XML, and
can be deployed on any Web-accessible platform.

www.manaraa.com

.NET and J2EE, a Comparison

7. Publishing Web Services in a registry to be discovered later by interested parties
accessing the registry. One type of registry provides a directory service for Web
Service providers and their services. This registry provides information
categorized by industry-type, product-type, service-location, service binding, etc.
Taxonomies are used to enable searches on this information. One
implementation of this registry is based on the Universal Description, Discovery
and Integration specification (UDDI). Another type of registry also acts as a
repository where Web Services entities such as a business-process schema are
stored. A current example of this type of registry is the electronic business XML
(ebXML) Registry and Repository.

8. Invoking Web Services over an existing Internet protocol such as HTTP or SMTP
using the Simple Object Access Protocol (SOAP).

Service Description
In order for Web Services to proliferate it is important to be able to describe them in some
structured way. The Web Services Description Language (WSDL)
(http://www.w3c.org!TR/wsdl) addresses this need by defining an XML grammar for
describing Web Services as collections of message-enabled endpoints or ports.

In WSDL, the abstract definition of endpoints and messages is separated from their concrete
deployment or bindings. The concrete protocol and data format specifications for a particular
endpoint type constitute a binding. An endpoint is defined by associating a web address with
a binding, and a collection of endpoints defines a service. A WSDL document uses the
following elements in the definition of Web Services:

r:J Types - data type definitions used to describe the messages to be exchanged.

r:J Message - a typed definition of the data to be exchanged. Messages and operations
are bound in order to form an endpoint or port.

r:J Operation - a description of an action exposed by the service. Operations can
support input and/or output messages.

r:J Port Type - a named set of abstract operations and related messages supported by
one or more ports.

r:J Binding - a concrete protocol and message format specification for operations and
messages defined by a particular port type.

r:J Port - a single endpoint defined as a combination of a binding and a network
address. In a WSDL document, services are defined as collections of ports or
endpoints. The abstract definition of a port is separated from its concrete protocol
and data format specification.

r:J Service - a collection of related ports. Multiple port definitions, sharing the same port
type within a service, provide semantically equivalent alternatives to service consumers.
This allows service consumers to choose the port or ports to communicate with.

259

www.manaraa.com

J. Jeffrey Hanson

The following example taken from W3C's WSDL (http://www.w3.org!rR/wsdl) site shows a
simple stock-quote WSDL document:

<?xml version="l.O"?>
<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote/definitions"
xmlns:tns="http://example.com/stockquote/definitions"
xmlns:xsdl="http://example.com/stockquote/schemas"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="GetLastTradePriceinput">
<part name="body" element="xsdl:TradePriceRequest"/>

</message>

<message name="GetLastTradePriceOutput">
<part name="body" element="xsdl:TradePrice"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePriceinput"/>
<output message="tns:GetLastTradePriceOutput"/>

</operation>
</portType>

</definitions>

This, simply put, describes a service that provides Stock Quotes. It accepts a Trade Price
Request and returns a Last Trade Price as output. This description of the service is quite
devoid of implementation details and yet provides sufficient information to use the services.
Web Services can, in this way, provide a system for hiding the implementation specifics of
systems making interoperability possible.

J2EE
J2EE-enabled Web Services are described by WSDL documents. Third parties who want to
transact business with aJ2EE-enabled Web Service company can look up information about
the company's Web Services in a registry. There, they will find links to URLs containing the
WSDL information needed to format XML documents correctly for integrating with the Web
Services exposed by the company .

. NET
As with aJ2EE Web Service, a .NET Web Service supports the WSDL 1.1 specification and
uses a WSDL document to describe itself. An XML namespace, however, is used within the
WSDL document to uniquely identify the Web Service's endpoints .

. NET provides a client-side component that allows an application to invoke Web Service
operations described by a WSDL document and a server-side component that maps Web Service
operations to COM-object method calls as described by a WSDL and a Web Services Meta
Language (WSML) (http://msdn.microsoft.com/library/en-us/soap/htm/soap_overview_72rO.asp)
file. This file is needed for Microsoft's implementation of SOAP.

260

www.manaraa.com

.NET and J2EE, a Comparison

Service Implementation
Implementing Web Services currently means structuring data and operations inside of an
XML document that complies with the SOAP specification. Once a Web Service component
is implemented, a client sends a message to the component as an XML document and the
component sends an XML document back to the client as the response.

J2EE
Existingjava classes and applications can be wrapped using the java API for XML-based
RPC (JAX-RPC) and exposed as Web Services.JAX-RPC uses XML to make remote
procedure calls (RPC) and exposes an API for marshaling (packing parameters and return
values to be distributed) and unmarshaling arguments and for transmitting and receiving
procedure calls.

WithJ2EE, business services written as EnterpriseJavaBeans are wrapped and exposed as
Web Services. The resulting wrapper is a SOAP-enabled Web Service that conforms to a
WSDL interface based on the original EJB's methods.

The J2EE Web Service architecture is a set of XML-based frameworks, which provide
infrastructures that allow companies to integrate business-service logic that was previously
exposed as proprietary interfaces. Currently,J2EE supports Web Services via the java API for
XML Processing (JAXP). This API allows developers to perform any Web Service operation
by manually parsing XML documents. For example, you can useJAXP to perform parsing
operations with SOAP, UDDI, WSDL, and ebXML.

J2EE also uses the Java API for XML Messaging (JAXM) to integrate one back-end system
with other back-end systems via the following five document-centric message exchanges:

1. A synchronous update whose response is an acknowledgment that the update was
received.

2. An asynchronous update whose response is an acknowledgment that the update
was received.

3. A synchronous inquiry whose response is data requested in the original message.

4. An asynchronous inquiry whose response is data requested in the original message.

5. An exchange where the sender sends a message and does not expect a reply.

When aJAXM client sends a message, the message first goes to aJAXM provider, which then
handles the actual transmission of the message to its destination. AJAXM client receives a
message from aJAXM provider that has received the message on behalf of the client and then
forwarded the inessage. A more likely scenario is that aJAXM client will receive an XML
message from another platform, and because it is in XML it will understand it.

261

www.manaraa.com

J. Jeffrey Hanson

.NET
.NET applications are no longer directly executed in native machine code. All programs are
compiled to an intermediate binary code called the Microsoft Intermediate Language (MSIL).
This portable, binary code is then compiled to native code using a just In Time compiler (JIT)
at run-time and run in a virtual machine called the Common Language Runtime (CLR). This
is similar to the way thatjava works, except .NET encompasses several languages; each is
translated to MSIL, which is executed in the CLR using the JIT - simple, really.

With the .NET platform, Microsoft provides several languages based on the Common
Language Infrastructure (CLI), such as Managed C++,JScript.NET, VB.NET, and C#. On
December 13, 2001, ECMA (formerly the European Computer Manufacturers Association)
ratified specifications for C# and the CLI making them official industry standards.

For existing Microsoft technologies like VB6, the Microsoft SOAP Toolkit offers components
that construct, transmit, read, and process SOAP messages. The toolkit also includes an
alternative to using the XML DOM API to process XML documents in SOAP messages called
the SOAP Messaging Object (SMO) framework (http://msdn.microsoft.com/library/en
us/soap/htm/soap_adv_2wdv.asp). The toolkit provides a component that maps Web Service
operations to COM-object method calls as described by the WSDL and WSML files of the
service. Conversely, the toolkit provides a generator that will generate WSDL files from COM
typelib descriptions.

Microsoft has merged its InterDev and Visual Studio products into a new development
environment, Visual Studio .NET. Together with the .NET framework, practically all of the
details of SOAP, XML, and Web Services discovery and binding are hidden from the user.

To create a Web Service with the .NET Framework outside of the Visual Studio. NET
environment, you simply create a file with an ASMX extension. The ASP.NET run-time, part
of the .NET Framework, recognizes this file as a Web Service and uses a built-in HTTP
handler to process requests on it. The run-time then forwards the requests to a .NET class
that's either included in the ASMX file or implemented separately. The following code shows
a simple Web Service written inC#:

<%® WebServices Language="C#" class="Hello" %>
using System.Web.Services;
class Hello
{

[WebMethod]
public string SayHello(string userName)
{

return "Hello " + userName;

This example demonstrates the WebServices directive, the directive for referencing the
System. Web. Services namespace, and a public method with the WebMethod attribute. The
WebMethod attribute makes a method accessible from a Web Services client. To deploy a .NET
Web Service, the implementation code is saved to a file with the ASMX extension, in an liS
virtual directory.

262

www.manaraa.com

.NET and J2EE, a Comparison

Service Publishing, Discovery, and Binding
Once a Web Service has been implemented, it must be published somewhere that allows
interested parties to find it. Information about how a client would connect to a Web Service
and interact with it must also be exposed somewhere accessible to them. This connection and
interaction information is referred to as binding information.

Registries are currently the primary means to publish, discover, and bind Web Services.
Registries contain the data structures and taxonomies used to describe Web Services and Web
Service providers. A registry can be hosted either by private organizations or by neutral third
parties. Currently two types ofregistries, UDDI and ebXML, are being addressed by the Web
Services community.

At the time of this writing, IBM and Microsoft have announced the Web Services Inspection
Language (WSIL) specification to allow applications to browse Web servers for XML Web
Services. WSIL promises to complement UDDI by making it easier to discover available
services on web sites not listed in the UDDI registries.

J2EE
Sun Microsystems is positioning its java API for XML Registries (JAXR) as a single general
purpose API for interoperating with multiple registry types. The java API for XML Registries
(JAXR) provides a uniform and standard API for accessing disparate registries within the java
platform. A registry provider is an implementation of a Web Services registry conforming to a
registry specification. AJAXR provider provides an implementation of the JAXR specification
typically as a fac;ade around an existing registry provider such as a UDDI or ebXML registry.
AJAXR client uses theJAXR API to access a registry via aJAXR provider.

There are three types ofJAXR providers:

o The JAXR Pluggable Provider.

o The Registry-specificJAXR Provider.

o TheJAXR Bridge Provider.

The Pluggable Provider implements features of the J AXR specification, which are independent
of any specific registry type. The Registry-specific JAXR Provider implements the JAXR
specification in a registry-specific manner. TheJAXR Bridge Provider is not specific to any
particular registry. It serves as a bridge to a class of registries such as ebXML or UDDI.

Sun provides a freely downloadable (http://www.sun.com/software/xml/developers/regrep/)
ebXML implementation based on the J2EE platform and implements the ebXML Registry
Information Model 1.0 and the ebXML Registry Services Specification 1.0. This
registry/repository implementation uses EJB technology and includes the following
components: a registry information model, registry services, a security model, a data access
API, java objects binding classes, and aJSP tag library.

263

www.manaraa.com

J. Jeffrey Hanson

.NET
At first, Microsoft had the discovery of Web Services with DISCO in the form of a discovery
(DISCO) file. A published DISCO file is an XML document that contains links to other
resources that describe the Web Service. Since the widespread adoption of UDDI, however,
Microsoft has supported it in order to maximize interoperability between solutions in what is,
after all, a set of specifications for interoperability.

In addition to providing a .NET UDDI server, the UDDI SDK provides support for Visual
Studio .NET and depends on the .NET framework. Products such as Microsoft Office XP offer
support for service discovery through UDDI.

Service Invocation and Execution
The Simple Object Access Protocol (SOAP) is a simple, lightweight XML-based protocol that
defines a messaging framework for exchanging structured data and type information across
the Web.

The SOAP specification consists of four main parts:

o A mandatory envelope for encapsulating data. The envelope contains an optional
header element (<SOAP-ENV:Header>) and a mandatory body (<SOAP
ENV:Body>).

o Optional data encoding rules for representing application-defined data types, and a
model for serializing non-syntactic data models (such as object).

0 A request/response message exchange pattern.

o An optional binding between SOAP and HTTP.

SOAP can be used in combination with any transport protocol or mechanism that is able to
transport the SOAP message.

Web Service recipients operate as SOAP listeners and can notify interested parties (other
Web Services, applications, etc.) when a Web Service request is received. The SOAP
listener validates a SOAP message against corresponding XML schemas as defined in a
WSDL file. The SOAP listener then unmarshals the SOAP message, turning it into a format
understandable by the Web Service implementation. Within the SOAP listener, message
dispatchers can invoke the corresponding Web Service code implementation. Finally,
business logic is performed to get the reply. The result of the business logic is transformed
into a SOAP response and returned to the Web Service caller. This process is shown in the
following diagram:

264

www.manaraa.com

.NET and J2EE, a Comparison

~ethod Call COM
Component

SOAP SOAP Request Result (.NET)
Client L SOAP Resp~onse

SOAP
Listener Method Call Java Class

I Result (J2EE)

t t
I I

WSDL
WSML

' "" --·· Document
Document (.NET)

J2EE
J2EE uses the java API for XML~based RPC (JAX~RPC) to send SOAP method calls to
remote parties and receive the results.JAX-RPC enables java technology developers to build
Web Services incorporating XML-based RPC functionality according to the SOAP 1.1
specification.

Once aJAX-RPC service has been defined and implemented, the service is deployed on a
server-sideJAX-RPC run-time system. The deployment step depends on the type of component
that has been used to implement theJAX-RPC service. For example, an EJB service that is
implemented as a stateless session bean is deployed in an EJB container. A container-provided
deployment tool provides support for the deployment of aJAX-RPC service.

During the deployment of aJAX-RPC service, the deployment tool configures one or more
protocol bindings for thisJAX-RPC service. A binding ties an abstract service definition to a
specific XML-based protocol and transport. An example of a binding is SOAP 1.1 over HTTP.

A Web Service client uses aJAX-RPC service by invoking remote methods on a service port
described by a WSDL document. A WSDL-to:Java compiler generates the client-side stub
class, service definition interface, and additional classes for the service and its ports.

There are three different modes of interaction between clients andJAX-RPC services:

D Synchronous Request-Response: The client invokes aJAX-RPC procedure and
blocks until it receives a return or an exception.

D One-Way RPC: The client invokes aJAX-RPC procedure but it does not block or
wait until it receives a return.

D Non-Blocking RPC Invocation: The client invokes aJAX-RPC procedure and
continues processing in the same thread then, later, blocks or polls for the return.

265

www.manaraa.com

J. Jeffrey Hanson

The Java API for XML Messaging or JAXM provides an API for packaging and transporting of
message-based business transactions using on-the-wire protocols defined by emerging standards.

Implementations ofJAXR (Java API for XML Registries) providers may useJAXM for
communication betweenJAXR providers and registry providers that export an XML
Messaging-based interface.

J2EE uses the Java Architecture for XML Binding (JAXB) to map elements in XML documents
exchanged with third parties to Java classes, so that a business system can process them.JAXB
compiles an XML schema into one or more Java classes. The generated classes handle the
details of XML parsing and formatting. Similarly, the generated classes ensure that the
constraints expressed in the schema are enforced in the resulting methods and Java data types.

The following diagram illustrates the J2EE Web Services programming model:

.NET

Client
Tier

Web
Tier

Business
Tie r

Enterprise
Tier

SOAP HTIP

Web Service Container

IIOP
Servlets

EJBs

SOAP

I

In Microsoft's .NET framework, interested parties can gain access to a Web Service by
implementing a Web Service listener. In order to implement a Web Service listener, a system
needs to understand SOAP messages, generate SOAP responses, provide a WSDL contract for
the Web Service, and advertise the Service via UDDI. If theW eb Service is hosted within liS
as an ASMX file, there is no need to implement a SOAP Listener, since liS does that job for
you. Also .NET has built-in classes that understand SOAP messages.

266

www.manaraa.com

.NET and J2EE, a Comparison

Microsoft Developers creating SOAP-based Web Service listeners and consumers currently
have three choices:

1. Construct a Web Service listener manually, using MSXML, ASP, ISAPI, etc.

2. Use the Microsoft Soap Toolkit version 2 to build a Web Service listener that
connects to a business facade, implemented using COM.

3. Use the built-in .NET SOAP message classes.

The Microsoft SOAP Toolkit 2.0 offers a client-side component that lets an application invoke
Web Service operations described by a WSDL document.

The following diagram illustrates the .NET Web Services programming model:

Client E>rternal
Tier Systems I Applications I

I
HTTP~

•---r----- Firewall ------.----..

Business
Tier

Enterprise
Tier

Time To Choose

so p

Web Service Container

ASP. NET

Proprietary
Protocol

1 Mainframe
~ystems

HTIP

SOAP

Having looked from a high level at how J2EE and .NET handle Web Services, we are faced with
a choice - which version do we implement? From a purely technical standpoint, each method
has advantages and disadvantages: .NET code often runs faster thanj2EE systems, but only
works on Microsoft operating systems; it is often easier to turn existingj2EE code into a Web
Service due to the object-oriented nature of java, whereas .NET code will have to be written
from scratch, particularly where the original code was Visual Basic; the list continues.

267

www.manaraa.com

J. Jeffrey Hanson

It is worth noting that there is a project underway to create an open-source implementation of
the .NET Framework, so non-Microsoft operating systems will soon be able to support .NET.
See http://www.go-mono.com/ for more details. As standardization continues, the availability of
.NET on non-Microsoft platforms will become easier. Although much existing Microsoft code is
not object oriented, .NET is entirely object oriented, including VB. NET. Writing wrappers for
VB components is no harder than doing the same for aJava component- the difficulty arises
when the VB code provides functionality that isn't exposed as a component.

The key advantage, perhaps, of using the .NET approach to Web Services is that it has been
designed for that purpose, whereas J2EE is being retrofitted by the addition of a number of
APis. Despite this,J2EE is an inherently modular platform, so the problem here is one of
maturity of technology; .NET has only just reached fmal release.

One advantage of usingJ2EE as a base for your system is that you have a much wider choice
of vendor for your pre-built software (application servers mostly), including many open source
projects. In many ways, open-source J2EE application servers are closer to the standards laid
down for Java, because they don't add proprietary extensions to overcome problems. As time
creeps on, open-source application servers are becoming more popular, and more competitive
than the more expensive vendor-driven options.

Microsoft offers several compelling business reasons for developing Web Services using its
.NET architecture:

o Easy migration for existing COM and Windows-based systems.

0 .NET's abstraction away from the hardware offers increased security for applications
developed to the Common Language Runtime.

0 Developer tools are, as usual, world-class and greatly ease the learning curve and
ease of development.

J2EE, as well, offers several enticing business reasons for developing Web Services using its
technologies:

0 Easy migration for existingJava shops.

0 Proven security at the code-execution level.

o Support from many different industry leaders.

Ultimately, unless you are starting your system from the bottom up, your choice of Web
Services implementation is more than likely going to be influenced by your present system. If
you have a team of skilled Java programmers, with aJ2EE business system, realistically you'll
want to continue withJ2EE. Similarly with .NET, there is no sense in wasting your
investments in Microsoft products (both time and money) by switching to J2EE -you're going
to want to keep on with what your team knows best. As Integrated Development
Environments (IDE) for Java become more powerful, the ease of development with Visual
Studio (.NET) may no longer be the deciding factor it may once have been.

268

www.manaraa.com

.NET and J2EE, a Comparison

From an adoption point of view, while Microsoft has provided systems for wrapping pre
.NET code so that it can work in the .NET framework and vice versa, the nature of the MS
languages before this change means that many will probably be unsuitable for this purpose.
The reverse - the ability to wrap .NET services so that they can work in a COM
environment - means instant interoperability with legacy systems while allowing a
migration to the .NET framework.

Existing Microsoft shops are unlikely to move to J2EE, due to the current investment in
Microsoft technologies (skills base, hardware, software, and business relationships). In
addition, the perceived cost of Microsoft-based solutions is lower, although there is room for
clarification on the total cost of ownership. A primary problem inJ2EE systems appears to be
over-engineering at the cost of development time, performance, and the hardware needed to
run these systems. On the other hand, Microsoft systems are PC-based, and these systems are
inherently less scalable and powerful, and the cost for scaling is high.

It may be worth noting that Microsoft has a conflict of interest in the area of Web Services.
Since Microsoft wish to be the providers of Web Services in addition to providing the tools
and specifications for implementing Web Services, it appears to have a first option advantage
in providing services such as single sign-on authentication and authorization, and referral
services that will make competing with them strictly for the biggest companies if at all.

J2EE is a mature, proven platform with architecture and operating system-independence - this
independence so resembles the principle of Web Services that it is no wonder it is a natural
fit. The ability to move from Intel-based machines to more powerful servers makes
applications written on this platform very scalable with an excellent Cost of Change curve.
Assuming that the business case for the application is sound, the system should work equally
well on a 486 PC with Windows (intranet application/small Internet user base) or an IBM
server farm with thousands of users (Internet enabled - customer and client system), and will
scale in cost as well as in performance according to the business needs at hand.

Perhaps one way of expressing the difference between the two is that the Microsoft camp
advocates buying more computers whereas Sun/IBM would support buying bigger computers.

In addition, Java has proven to be a language that makes it easy to architect and implement
maintainable systems. The fact that patterns are core to Java and the Java platform makes it
easy to communicate architectural semantics. The specification system that is in place for Java
means that industry leaders are responsible for making sure that the available APis for
application development are relevant to the needs of existing and future systems.

ExistingJ2EE software houses will no doubt appreciate these benefits, in addition to the
flexibility that well-architectedJava systems offer and the existing base of supporting packages
and open-source initiatives that can be a starting point for the creation of servers. In addition,
there is a wealth of information available on the subject.

269

www.manaraa.com

J. Jeffrey Hanson

The primary difficulty withj2EE is Sun's apparent conflicting tendencies as far as Web
Services are concerned. While strongly pushing a proprietary platform for Web Services in
the form of the iPlanet server, the work of creating usable specifications for development
appears to be lagging behind Microsoft in effort. In this way, Sun's strategy of both offering
products for the creation and hosting of Web Services, and providing Web Services strongly
resembles that of Microsoft, only in this case it appears to be interfering with their ability to
provide the systems for Web Services creation and deployment.

The upside to this is that there are several other proponents of Web Services, such as IBM,
BEA, and others, that are strongly supporting the creation of Web Services on the Java
platform, with the additional support of open-source initiatives such as the Apache Software
Foundation. As well as this, several companies are offering products that automatically expose
Java applications as services through a process known as introspection. This means that
developers are able to create software in the usual way, and make it available for use by in
process non-distributed systems and distributed systems using technologies such as RMI that
resemble Web Services but that involve java-only protocols or heavyweight protocols such as
CORBA as is currently the case. Additionally, they can be made available as Web Services
using XML as the communication and data encoding mechanism. This makes Web Services a
glue or fac;ade to the existingjava infrastructure.

In any case, java programmers are not used to the Point and Click support for software
development that Microsoft developers receive and so the lack of these systems will not hold
them back.

Conclusion
Web Services promise to revolutionize not only the way we develop software systems, but
how we do business. Some aspects of Web Services development, such as security and
transaction handling, are yet to be completely solved, and they must be in order to make the
Web Services dream a reality.

WDSL, SOAP, UDDI, XML, Microsoft's .NET, and Sun'sj2EE provide the technologies and
tools needed to get Web Services off to a running start. Are these technologies and tools
enough to make Web Services a reality and fulfill all of their promises? Time will tell.

For the sake of simplicity, we have assumed the world of software development in the
business world in neatly divided into two camps- Microsoft vs.Java. In any case, this view is
sufficiently accurate to validate the analysis of the competing standards. It is apparent that
Microsoft-based development will, on the whole, continue to be based on Microsoft
technologies, while java-based development will continue to use java technologies after the
introduction of the Web Services model. No surprises there.

270

www.manaraa.com

.NET and J2EE, a Comparison

A final nod must be made to those entities for which the above considerations do not apply.
In companies where systems are contracted, there is more flexibility in choosing between the
two since there is less risk in terms of current investment in one technology or the other. In
absolute terms, the two platforms are suitable for somewhat different needs. Microsoft-based
solutions are generally more suitable for smaller companies (up to SME), which need simpler
lighter systems with less need for scalability. This is both in terms of the type of hardware
supported, and in the level of flexibility available to modify low-level aspects of the platform
for specific needs. The .NET platform is ideal for the creation of new systems due to the rapid
development offered through Visual Studio .NET and as it naturally benefits from the last few
years of distributed application research by virtue of being new.

It is, however, not especially suitable for integration, even with existing Microsoft-based
solutions. Legacy applications are usually run on legacy systems, and it is therefore a
considerable advantage for J2EE that the Java platform is hardware and OS independent.
Integration on .NET is more a matter of controlled migration.

J2EE is also architected for enterprise systems and so is currently more scalable. The fact that
a Microsoft solution is PC-based means that scalability comes through clustering and with this
comes the increased complexity and cost of data management, synchronization (especially
relating to transactions), and session management. While J2EE is often also clustered, this has
been factored in at its inception, so it is generally less necessary to cluster J2EE servers, and
when it is used each machine can handle more load so fewer machines can serve the same
load as a cluster of Microsoft servers, thus simplifying the clustering process.

Finally,J2EE systems are more secure. This comes partly through Microsoft's focus on ease of
use over security, and partly through their dependence on vast amounts of existing and
ancient code. The recent drive for reducing bugs and improving security by overhauling the
code base may help, which will go some way to revising the existing record of Microsoft with
security problems.

The choice between the two systems should be based on business needs. This will certainly
include considerations such as the prevalence of the systems with one or the other of the
platforms. Companies with existing relationships with Microsoft and Microsoft-based software
houses will no doubt find that it is more convenient and less costly to stay with this
technology and it may be that the inconvenience of a completely new platform (that .NET
represents) will be outweighed by the benefits of the countless improvements in software
engineering that .NET also represents in addition to the close customer relationships that
Microsoft keeps.

On the other hand, the flexibility thatJ2EE offers means that a company's systems will be more
readily sensitive to meet changing business needs. Current investment inJ2EE products (which
may be as much as $15,000/processor) may also prohibit changing systems, even if there is a
perceived need for it since many companies find that J2EE already meets most of their needs.

The choice will of course ultimately be dependent on the prevalent conditions in the
company. The considerations above, however, should give you a number of pointers as to
how each of these conditions should be weighted in making your decision.

271

www.manaraa.com

Authors: Gunjan Samtani and Dimple Sadhwani

• Application Frameworks Fundamentals

• Application Frameworks and Web Services

• .NET

www.manaraa.com

Web Services and Application
Frameworks (.NET and J2EE)

Application frameworks are a holistic set of guidelines and specifications that provide
platforms, tools, and programming environments for addressing the design, integration,
performance, security, and reliability of distributed and multi-tiered applications. An
application framework includes presentation services, server-side processing, session
management, a business logic framework, application data caching, application logic, and
support for persistence, transactions, and security, as well as logging services for applications.

Thus, an application framework provides the following:

0 Transaction Management.

o Scalability.

0 Security.

o State Management.

0 Application Integration Services.

0 Administration Services.

0 Run-time Services.

0 Connection Services.

0 Messaging Services.

0 Application Development, Deployment, and Execution Platform.

0 Web Services.

0 Business Process Management Services.

0 Support for various graphical user interfaces including web browsers and Wireless devices.

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

The following diagram illustrates how an application framework fits into the rest of the system world:

Personal
Computers

(IBM. Apple ...)

Connection
Services

Session
Management

Security

Packaged
Applications

(SCM, ERP,CRM ...)

•

I
I .,

Pervasive Devices
(Hand Helds,

Cell Phones ...)

•
Application Framework

Messaging
Services

Dynamic
Content
Services

Transaction
Management

Relational
Databases

(Sybase, Oracle,
MS.SQL, DB2 ...)

Browsers
(IE, Netscape .. .)

Communication
Services

Portable and
Scalable Application

Development
Platform

Legacy Systems
(Ma1nframe, CICSJ

Home-built
Custom

Applications
C. C++, VB, Java ...

Directones,
CORBA,

COM/DCOM

The application development tools and application servers are built on top of application
frameworks. The application framework aims to provide a single and unified software
infrastructure that reduces the number of enterprise software products to be supported,
maintained, and integrated. The unified software infrastructure should provide a fully
integrated application environment, reaching from the need to include and integrate a wide
variety of legacy applications through to the need to create and deploy Web Services.

Flavors Of Application Frameworks
Application frameworks for client-server and Web-based applications can broadly be
classified into two distinct fundamental physical architectures and technologies - Microsoft
.NET and Java 2 Enterprise Edition (J2EE) .

Let's have a brief look at these two frameworks.

274

www.manaraa.com

Web Services and Application Frameworks (.NET and J2EE)

Microsoft .NET Framework
Microsoft .NET is a platform that comprises of servers, clients, and services. The .NET
framework includes everything from basic run-time libraries to user-interface libraries - the
common language run-time (CLR), the C#, Managed C++, VB.NET, andJScript.NET
languages and the .NET Framework APis. It comprises the following:

1. .NET Platform: This includes the tools and infrastructure to build .NET services
and.NET device software.

2. .NET Product and Services: This includes Microsoft .NET-based enterprise
servers, which provide support for the .NET framework, such as BizTalk Server
2002 and SQL Server 2000, Windows .NET, Visual Studio .NET, and Office
.NET.

3. Third-party (Vendor) .NET Services: Third-party (vendor) services built on the
.NET platform.

The following diagram illustrates how the elements of the .NET Framework, including some
of the APis, fit together:

System.WinForms

(F~r~s) (Controls) (Drawing)

~dows Application Services)

System Base Classes

ADO+)(XML) 10

)(Security J etc.

For more details about Microsoft .NET Framework, visit Microsoft's web site
http://www.microsoft.com/net.

275

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Java 2 Platform, Enterprise Edition {J2EE) Framework
J2EE is a set of specifications, which define the standard for developing multi-tier enterprise
applications withJava.J2EE provides a complete framework for design, development,
assembly, and deployment of Java applications built on a multi-tiered distributed
application model. The J2EE specification defines numerous API services and multiple
application programming models for developing applications and integrating them with the
enterprise systems.

The latest J2EE 1.3 APis include the following:

0 EnterpriseJavaBeans (EJB) 2.0.

o J2EE Connector Architecture 1.0.

0 JDBC 2.0 (for database connectivity).

0 J avaServer Pages (JSP) 1.2.

o Servlet 2.3.

o Java Transaction API (JTA) 1.0.1.

o Java Messaging Service (JMS) 1.0.2.

o Java Name and Directory Interface QNDI) 1.2.

o Java Remote Method Invocation (RMI) 1.0.

o Remote Method Invocation/Internet Inter-ORB Protocol (RMI/IIOP) 1.0.

0 Java Authentication and Authorization Service (JAAS) 1.0.

o JavaMail 1.1.

o Java API for XML Parsing (JAXP) 1.1.

The following diagram illustrates how the elements ofJ2EE 1.3 fit together to provide support
for Web Services:

276

www.manaraa.com

Web Services and Application Frameworks (.NET and J2EE)

/ Application Services

Messaging I Services I Communication
JavaMail JDBC TCP/iP. HITP. SSL
JMS JNDI RMi

1
Web Services I JTA I RMi-IIOP

SOAP

Business logic

l Enti~ I Beans
SessioJ I "o'~ge] B nven

eans Beans

EJB Container

/ Presentation logic

IJavaServe!rJ B c:;JTML/
1 Pages ervlets XML
'--

Web Container

For more details aboutJ2EE Framework, visit Sun's web site http:/java.sun.com/j2ee.

Web Services: All About lnteroperability
Web Services are self-contained, modular applications that can be described, published, located,
and invoked over a network. They are an emerging technology that is based on service-oriented
architecture (SOA) and enable new and existing applications to be integrated using XML as the
data format and standard network protocols such as HTTP for transportation.

Web Services are based on an "open" environment and standards, which ensures that a Web
Service can be located and used, no matter where it is, what platform it runs on, or who
developed it.

Classification of Web Services
Web Services can be classified as follows:

D User-centric Web Services: User-centric Web Services are used to provide user
personalization, interface customization, and support for multiple languages, thereby
greatly enhancing user experience. They logically separate the layout (presentation)
in formats such as HyperText Markup Language (HTML) from the actual data in
Extensible Markup Language (XML).

277

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

o Application-centric Web Services: Application-centric Web Services are used to
integrate enterprise and business-to-business applications. Application-centric Web
Services enable companies to integrate applications and business processes without
the constraints of a proprietary infrastructure, platforms, and operating systems.

Both user- and application-centric Web Services make full use of open standards, including
HyperText Transfer Protocol (HTTP), Extensible Markup Language (XML), Simple Object
Access Protocol (SOAP), Web Services Description Language (WSDL), and Universal
Discovery, Description, and Integration (UDDI).

Application Frameworks and Web Services
As we saw in the previous section, XML-based Web Services architecture allows programs
written in different languages on different platforms to communicate with each other in a
standards-based way. It is the application frameworks that provide guidelines and
infrastructure for the deployment, management, and execution of Web Services. The
application frameworks have to provide support for all the Web Services standards.

The tools and servers built on top of the application frameworks provide a programming
model with a development and run-time environment for building both user- and
application-centric Web Services. Furthermore, they have to implement all the Web
Services standards as supported by the underlying framework. The following diagram
shows the relationship between application frameworks, Web Services servers, and Web
Services standards:

Let's discuss how Microsoft .NET andj2EE frameworks are providing support for Web
Services:

278

www.manaraa.com

Web Services and Application Frameworks (.NET and J2EE)

Microsoft .NET
Microsoft .NET is the Microsoft XML Web Services platform. It provides built-in support for
building and consuming standards-based Web Services. It enables the creation and use of
XML-based applications, processes, and web sites as Web Services. Through just a single line
of code or setting a value of an attribute, it is possible to turn an application into a Web
Service in the .NET environment. Furthermore, by default all inter-process communication is
done using the SOAP standard. According to the president of Microsoft Mr. Steve Balmer, "to
the .NET framework, all components can be Web Services, and Web Services are just a kind
of component".

As shown in the following diagram, Microsoft .NET provides:

0 A programming model to build XML Web Services and applications.

0 Web Services development tools such as Visual Studio .NET to define and develop
application functionality and architecture for XML Web Services and applications.

0 Web Services-enabled servers such as Biz Talk Server 2002 and SQL Server 2000.
Biz Talk Server Toolkit for Microsoft .NET enables Web Services orchestration
through its integration with Visual Studio .NET. Further, the SQL Server 2000 Web
Services Toolkit enables the usage of Visual Studio .NET to extend the capabilities of
applications built on SQL Server 2000.

0 A set of pre-built user-centric XML Web Services such as Microsoft .NET My Services.

I

I

/ Microsoft. NET Support for Web Services

Web Services Oriented
Programming Model

Web Services Enabled
Servers (Biz Talk Server,

Windows 2000, SQL Server)

[
Set of Pre-built XML

Web Services

Web Services Development
Tools (Visual Studio .NET)

Java 2 Platform, Enterprise Edition (J2EE)
The new APis released by Sun, as part ofJ2EE 1.3, provide a top-to-bottom, end-to-end
solution for a Web Services-based architecture. J2EE 1.3 simplifies integration with new
technologies for Web Services, such as Java Message Service (JMS) and theJ2EE Connector
Architecture (JCA).

279

www.manaraa.com

Gunjan S.amtani and Dimple Sadhwani

J2EE server products are already providing basic Web Services support such as accessing
J2EE components using the SOAP 1.1 protocol. Furthermore, J2EE-based application servers,
such as iPlanet, W ebSphere, and W ebLogic, are also supporting the automatic generation of
Web Services interfaces, including the WSDL file that describes the service, and the facilities
for marshaling and un-marshaling the SOAP request to back-end EJB components.

Recently released, Sun Microsystems'Java Web Services Developer Pack (WSDP) andjava
XML Pack contains:

0 JAXP Gava API for XML Processing)- to support the creation, receipt, and
manipulation of XML data, including XML Schema.

o JAX-RPC Gava API for XML-based Remote Procedure Calls)- to enable the
creation of Web Services using SOAP and WSDL.

o JAXM Gava API for XML Messaging) to support XML messaging via SOAP.

o JAXR Gava API for XML Registries) to support access to UDDI registries.

Lastly, as far as Web Services security is concerned, apart from the security package that
is already a part of the Java Developers Kit 1.3, Sun has released the]SSE G ava Secure
Socket Extension) API as part of the Java 2 SDK, Standard edition 1.4. This API supports
data encryption, authentication on the server side (and optionally on the client side),
message integrity, SSL (Secure Sockets Layer), and transport layer security across any
TCP/IP connection.

The following diagram illustrates the range of support for Web Services now available withJ2EE:

Java Messaging
Service (JMS)

J2EE Connector
Architecture (JCA)

J2EE Support for Web Services

Java API for XML
Registries (JAXR)

Java API for XML
Processing (JAXP)

~PI for XML·bas~ r:" . L RPC (JAX·RPC) _j L a WSDP Reg1stry Server

JavaServer Pages Standard
Tag library (JSTL)

Differences Between J2EE and .NET Frameworks for Web
Services Support

J2EE and the Microsoft .NET frameworks both hold the promise of being the predominant
Web Services framework. In this section, we compare and contrast between the two
frameworks, ignoring all the hype associated with their marketing campaigns.

280

www.manaraa.com

Criteria

Fundamental
Design and
Support for
Web Services

Implementation

Pricing

Web Services and Application Frameworks (.NET and J2EE)

J2EE Framework

J2EE is supporting Web
Services through a pack of APis
such asJAXM,JAXP,JAXR,
andJAX-RPC.

The implementation of Web
Services inj2EE will typically
be done through Enterprise
JavaBeans. You can, however,
also have standalone Java
applications providing a Web
Services implementation. It all
depends on how the business
processing and data logic layer
of an application is designed
and built.

Expensive compared to
. NET. If a company already
has aj2EE-based application
server platform, however, it
makes much more sense to
use the existing infrastructure
and assets.

On average (as a ballpark
estimate), ifj2EE-based
application servers are run on
UNIX platforms, it would cost a
company five times more to
have a Web Services
implementation on the J2EE
platform compared with the
.NET platform. This factor of
five includes the hardware and
the software cost. It is worth
stressing that the actual price
would also include the cost of
development and maintenance.

.NET Framework

Web Services are built right
into the platform, and
Microsoft's .NET framework
provides ready support for
Web Services standards such as
SOAP, WSDL, and UDDI.

The implementation of Web
Services in the .NET
framework will typically be
done in .NET -managed
components, including
managed classes and
COM/COM+ components.

Much cheaper compared to the
J2EE-based application servers .
J2EE, however, is still a better
choice for industry-strength
server-side applications.

Table continued on following page

281

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

Criteria J2EE Framework .NET Framework

Portability Java code can be ported across .NET ties primarily to
multiple platforms including Microsoft's operating systems.
Windows, UNIX, OS390, and The .NET framework,
AS400. however, includes the

Thus,Java-driven Web Services
Common Language Runtime
(CLR), which is analogous to

may be developed on one the java Runtime Environment
platform, but deployed and (JRE). The CLR acts as an
executed on another. intermediary between .NET

sourcecode and the underlying
hardware. The .NET code runs
within the CLR.

Once the CLR is ported to
another platform, .NET
software should run as on the
platform where it was written.

Tools and There are several companies Microsoft's cornerstone IDE
Servers that have built Integrated for Web Services is Visual

Development Tools (IDEs) and Studio .NET. As of this writing,
application servers based on the there is no doubt that
J2EE framework. A majority of Microsoft's tool Visual Studio
these companies have already .NET is ahead of its
started supporting Web Services competition in terms of its
creation, deployment, and support for Web Services.
execution within their products.

Web Services-enabled servers
The support for Web Services from Microsoft include BizTalk
standards differs from product 2002 and SQL Server 2000.
to product.

Promoting Several (independent) All the tools, servers, and
Companies companies including IBM, BEA technology are controlled by a

Systems, Oracle, HP, and Sun single company - Microsoft.
Microsystems. All these

Although there is no question
companies will be providing
support for Web Services in

about Microsoft's stability and

their J2EE-based development commitment towards Web

tools and application servers. Services, without competition
the technology promoted and

This is a comforting factor, as offered may not be best one.
there are competing products in
this technology, which means
that there is no monopoly.

282

www.manaraa.com

Web Services and Application Frameworks (.NET and J2EE)

Criteria J2EE Framework .NET Framework

Maturity of
Platform

J2EE has proven to be a robust,
scalable, and mature platform
over the last four years. The
addition of support for Web
Services is just another feature
for this platform.

Although .NET inherits a lot of
features from the Windows
DNA architecture, it is still
relatively new and has to prove
itself to be able to offer an
enterprise-wide framework.

On a final comparison note on popularity, according to a poll (conducted in December 2001)
of enterprise IT professionals run by ZDNet UK's Tech Update channel, a majority of
implementations of Web Services will be based onjava (79%) rather than Microsoft's .NET
(21 %) alternative. It is, however, worth mentioning that this poll was taken before the release
of the key Microsoft products that provides Web Services development tools and servers,
which were launched in February 2002. It will be interesting to see what the actual position
will be in December 2002, onceJ2EE and .NET-based products have been out in the
marketplace for a while.

How To Choose an Application Framework for Web
Services

If your company is debating how to choose between such architecturally different frameworks
for Web Services implementation, you are not alone. This debate within IT groups in several
companies is going on at every level - right from developers, through mid-level managers, to
senior executives. It is not an easy choice if a company is not already totally committed to
either framework.

The Ten Most Important Deciding Factors
Here are the ten most important factors that should be carefully considered before making a
conclusive decision onJ2EE and/or Microsoft .NET as a framework for Web Services within
your company:

1. What is the existing framework within your company? Is itJ2EE or
Microsoft/.NET or a mix of both?

2. Which framework's implementation will yield a higher return on investment
(ROI)? Which framework's products fit within your budget?

3. Which framework fits both the short-term and long-term IT and business
strategies of your company?

4. Which framework can be easily supported within your IT infrastructure,
eventually leading to lower total cost of ownership?

5. What technologies are your developers experts in?

283

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

6. Which framework's products are evolving more rapidly and closely to the Web
Services standards, which are still being defined?

7. Which framework's products are more robust, scalable, and most importantly
meet your integration needs with less complexity?

8. Which framework's products offer greater security so that you feel comfortable in
using Web Services for business-to-business integration?

9. Which framework's products offer greater flexibility for integrating third-party
(vendor) services?

10. Which framework offers greater support for aggregation and personalization of
user preferences?

Now that we have discussed the questions, here are the answers, in the same order. It is very
important to mention at this juncture that these answers are not the ONLY correct answers
and that there may be several answers to these questions. It is in fact quite possible that these
questions may not have a single answer. In such cases, companies have to keep their long
term goals in mind when making decisions. The decision may very well be to implement both
frameworks within the company, and that may be perfectly right for a specific organization.
After all, Web Services address connectivity needs by enabling open interaction between
systems implemented on disparate platforms such as Microsoft's .NET andjava 2 Enterprise
Edition {J2EE).

1. Evaluate the existing infrastructure (applications, development tools, and
application servers) within your company. If the answer isJ2EE, then usej2EE to
implement Web Services within the firm. If the answer is Microsoft-based
technology, then use .NET. Try to make the best use of your existing
infrastructure as much as possible.

If there is a mix of both platforms within your company, then decide on a project-by-project
basis. In some cases J2EE would make more sense and in others .NET.

2. Try to apply the following formula when deciding which platform to use for Web
Services implementation:

Increased Revenue + Decreased Cost + Improved Efficiency = Higher Profitability

Obviously, you have to consider your budget as well when deciding between the two
frameworks. As mentioned in the comparison table betweenj2EE and .NET frameworks,
J2EE is much more expensive as a new proposition when compared to .NET.

284

3. There is no definite answer to this question. You have to do the homework
yourself in evaluating the short-term and long-term goals of your company.
Choose a platform that fits them. See answer 7 for more details.

www.manaraa.com

Web Services and Application Frameworks (.NET and J2EE)

4. The total cost of ownership is defined as follows:

Cost of Ownership = Co t to implement + Cost to maintain

The framework that has a lower cost of ownership, however, may not be suitable for your
company - based on the existing infrastructure, goals, etc.

5. This is one of the most important deciding factors. If the in-house developers are
experts in Microsoft-based technology, introducing and implementingJ2EE is a
very tough (not to mention strange) call. No matter how good the technology is,
only correct usage makes it useful for a company. If you're not using in-house
developers, you should pick a company who offer a Web Services solution that
best fits with the answers to the other issues.

6. After the Visual Studio .NET and .NET-based enterprise server release in
February 2002, Microsoft has indeed taken a lead over any of the J2EE
framework-based products, such as BEA's WebLogic and IBM's WebSphere, as
far as support for Web Services is concerned. This may, however, very well be a
short-term lead as severalJ2EE product vendors (BEA, IBM) have already or are
about to release new versions of their products that would provide complete
support for Web Services and their standards.

7. As far as scalability and robustness are concerned, there is no question that J2EE
beats Microsoft technology hands down. But if you are a small-to-medium size
organization where these are secondary issues, then Microsoft's .NET may fit
your organizational needs. The complexity of development, deployment, and
maintenance is much less in Microsoft technology-based products. Visual Studio
.NET is a marvelous example of how Microsoft eases the development work
required for Web Services.

8. As of now, both the frameworks appear to be at par as far as their security
features are concerned. The role-based security model of .NET may have an edge
over J2EE, as it will be widely used in Web Services.

9. As far as open architecture goes,J2EE is far superior to .NET. Whether this is a
deciding factor for your company is something that can only be determined by
the need for using third-party vendor services within your company. One point
worth mentioning here is that all the major packaged application providers have
announced support for bothJ2EE and .NET. So, check with your packaged
application vendor companies as well.

10. Microsoft .NET offers a much wider support for personalization of user
preferences through .NET My Services.

285

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

The answers to these questions should be sought both from top (senior
management) and bottom (developers) within an IT organization.

Application Servers and Packaged Application
Providers

Most of the application server vendors have already started providing at least partial support
for Web Services and their standards. Based on the industry trend and press releases by these
vendors, it appears that full and complete support for Web Services by all the major
application server vendors is now a matter of dotting the i's and crossing the t's. Thus, the
probability that you will be able to utilize your current EAI and B2B integration infrastructure
in deploying and using Web Services is very high.

Furthermore, all the major packaged application software vendors are racing to embrace Web
Services. These include the enterprise resource planning (ERP), the supply chain management
(SCM), and the customer relationship management (CRM) software providers. The trend
among these packaged application providers is to stay on the sidelines of this emerging battle
betweenj2EE and .NET- which by the way is the correct approach too. They are doing so
by supporting both these frameworks. For example, SAP - the biggest ERP vendor - has
recently announced that its implementation of Web Services would include support for both
J2EE and .NET. SAP's Web Application Server (which is being touted as the next-generation
Web Application Development Platform) will allow application components to be provided as
Web Services.

A Word of Caution
Everything mentioned above is good, but companies are looking for answers about where the
support for Web Services by different application server vendors stands today. The fact of the
matter is that Web Services standards don't yet define security, operational management,
workflow, business rules, transactional integrity, and other elements necessary for an
enterprise-ready computing platform.

An Example of Application Servers and Web Services
In this example, the retail clients and in-house clients of a financial company use a portfolio
management portal to monitor their investments. The front-end of the portal is built using
Microsoft technology (Active Server Pages .NET (ASP.NET), Internet Information Services
(liS) Web Server, VB Script, etc.) One of the features provided within the portal application is
quote information. Using this feature, the clients can retrieve real-time quotation for any
stock. When a client requests a quote for any stock, the request is sent from the browser to the
Web Server.

286

www.manaraa.com

Web Services and Application Frameworks (.NET and J2EE)

As may potentially happen within any mid-to-large size company, we are assuming that the
quote service is provided to multiple clients as a Web Service by a middleware application,
with our portfolio management portal being just one of those clients. Another client, as shown
in the figure, is a VB application.

The information about Web Services offered by this middleware application (which may be
published by some other group within the company) is obtained from the private internal
UDDI registry and invoked over the intranet. The implementation of the business methods
exposed by the Web Service is provided by EJBs contained in another application server.

This is a typical example of .NET-to:J2EE Application server integration using Web Services.
The binding information for frequently used Web Services, such as those for requesting
quotes, can be cached by the client application, to avoid the resource-intensive and time
consuming dynamic binding. In this example, Web Services loosely integrate the Microsoft
technology-based portfolio management application with the J2EE-based middleware
application that interfaces with the mainframe to receive the quote:

3
Get Location

.,
J2EE-based IBM's

WebSphere
Application Server

Quote Service EJB
(Web Service Provider

Application)

• Get
Quote

• • Information

IBM DB2
Data Source

UDDI Registry
(Private)

4

Quote "
Web Service ,.--M-ic_ro_so_ft_ l_ls_

• Request MS. NET·based
Portfolio

The sequence of steps is as follows:

Visual Basic
Custom Appl ication

FireWall

Request Quote for
a stock

Management
System ASP.NET/
HTML/
VBScript
Front-end

1. The user requests quotes for a specific company on an
ASP. NET /VBScript/HTML frontend that is passed over to the portfolio
management portal running within Microsoft liS. Here for the sake of simplicity
it is assumed that the user has already successfully logged in to the application
and has a valid session established.

287

www.manaraa.com

Gunjan Samtani and Dimple Sadhwani

2. The .NET-based portal application gets information about Web Services made
available by the J2EE-based middleware application by performing a look-up in
the private UDDI registry.

3. The location of and WSDL binding information for the Web Services is sent to
the portal application as a SOAP-based message.

4. The portal application invokes the Web Service published by the middleware
application, passing a stock symbol as a part of a SOAP-based message.

5. The actual implementation of the appropriate Web Service is provided by EJBs
running within aJ2EE-based application server. The EJBs use theJDBC API to
get information from the data source, which in this case is IBM's DB2.

6. The EJBs send the Web Services response to the portal application as a SOAP
based message.

7. The response is formatted in HTML (using XSLT) and sent back to the browser
based client application.

8. Another VB custom application within the company intranet invokes the same
Web Service. The communication happens based on SOAP.

Conclusion
Application frameworks provide a platform for design, development, assembly, deployment,
execution, and monitoring of applications built on a multi-tiered distributed application
model. Leading application frameworks (Microsoft .NET andJ2EE) are providing full
support for the Web Services and competing to become the framework of choice for Web
Services initiatives within companies. This enterprise war betweenJ2EE and .NET is bound
to go on for a few years. Ultimately, it is the Web Services technology that will be the
winner, as these frameworks will push each other to outbid the competition in providing
support for Web Services, leading to faster adoption of Web Services standards, creation of
efficient tools and robust and scalable application servers and, last but not least, cheaper
development tools and servers.

288

www.manaraa.com

Web Services and Application Frameworks (.NET and J2EE)

289

www.manaraa.com

Author: Eduardo B. Fernandez

• Communications Level

• Framework Providers

• Web Services Providers

• Security Products

Supporting Levels

www.manaraa.com

Web Services Security

At the Info World Next Gen Web Services conference in January 2002, 51% of the attendants
considered security the single largest obstacle to general acceptance of Web Services. Are
these fears warranted, or are these people just scared of something they don't fully
understand? Is the security of Web Services so precarious? Can we overcome these problems
so that businesses and the general public will trust these services? We'll take a look at these
issues trying to evaluate the situation. We don't pretend to be comprehensive but instead
touch on the most important issues.

First we should take a look at the participants in this game. We can distinguish four basic roles
related to Web Services (some institutions could support combinations of them):

0 Provider- This is a person or business that creates a Web Service and places it in a
public repository. They only want authorized customers to access their services.

0 Keeper of repositories of Web Services- These are the institutions that provide public
catalogs of services. They must assure authorized access to these catalogs.

0 Keeper of Web Services- These store the Web Services code and data. They may be the
same as the keepers of repositories or the Web Services providers, but could also be
specialized institutions.

0 Consumer of Web Services -They expect high quality services without malicious
software. If they send their data to a Web Service, this data should be used in the
proper way and protected from leakage or corruption.

The expectations of these roles imply in turn the following security requirements:

0 Secure authentication between principals. This is a precondition for applying
authorization to access Web Services.

www.manaraa.com

Eduardo B. Fernandez

0 Secure communication between principals. Their message should not be intercepted
or corrupted.

0 Certification of the origin of a Web Service.

0 Secure storage of repositories and Web Services. There may be different types of
access to a Web Service, different users should have authorization to add, delete, or
modify entries from a repository.

0 Secure transit and residence of Web Services through different domains.

By security we mean the protection against unauthorized reading, modification, or destruction
of information. Obviously, there are many degrees of security; we consider here the level
required for e-commerce, where a system penetration could mean the loss of large amounts of
money and of business prestige. There are two basic security models that apply to Internet
systems: the access matrix, and Role-Based Access Control {RBAC, seeR. C. Summers, Secure
Computing: Threats and Safeguards, McGraw-Hill, 1997, ISBN 0070694192). The most common
model now is RBAC and most of the new systems support this model. Another concern is
privacy, the right of individuals to have control of their personal information.

The possible attackers can be external {hackers) or internal {insiders). Some security
mechanisms such as firewalls are mostly intended to control external attacks, while others
such as audit trails are useful to control internal attacks. The security features of the operating
system should control both internal and external attacks. The design principles needed to
build secure systems apply to both types of attack.

To provide a complete perspective, we consider the architectural levels involved in satisfying
these security requirements. This is what some call the Web Services stack, although it is not
really a stack. A basic principle of security is the need to secure all these levels; any weak
level will permit attackers to penetrate the system. These levels include (some of these levels
could be further refined but for our purposes this is enough detail):

0 Workflow or business process level.

0 Cataloging and description of Web Services.

0 Communications level (typically SOAP).

0 Storage of XML documents.

We will call these levels the Web Service levels and we discuss them first. It should be noted
that they require supporting layers that we discuss later. The following diagram shows one of
these supporting layers, the HTTP layer:

292

www.manaraa.com

Web Services Security

Q-------CJ Business Workflow

--
\ Web Services

Catalog and
Description I WS2 1 Registry

.___HE_A_oE_R___. ~P_,.AY:...., L_oA_o__,t_L o o o

/

The Web Service Levels

SOAP

\\
\
j XML

j
/

ooo HTIP

These levels consider the definition and storage of Web Services and their incorporation into
business processes.

The Workflow level is defined by languages such as ebXML (http://www.ebxml.org/),
RosettaNet (http://www.rosettanet.org/), and BizTalk (http://www.biztalk.org/). There is also
an Oasis Committee specification for this level: XLANG
(http://xml.coverpages.org/xlang.html). These languages specify business processes,
activities, coordination of tasks, and the flow of tasks or documents to perform these
activities. The idea is to encourage business interaction by making known the processes they
can provide to each other. To my knowledge none of the organizations responsible for these
languages has defined security standards or recommendations for security specifications
(ebXML has recommendations for the catalog and description level). They are also
overlapping and competing languages, which makes it harder to evaluate their effect on the
security of future systems.

The next Web Services level is concerned with the cataloging and description of Web
Services. The Universal Description, Discovery, and Integration (UDDI) committee has
defined some general security guidelines with few details
(http://www.uddi.org/specification.html). These policies include:

293

www.manaraa.com

Eduardo B. Fernandez

0 Only authorized individuals can publish or change information in the registry

0 Changes or deletions can only be made by the originator of the information

0 Each instance of a UDDI registry can define its own user authentication mechanism

On its part, the ebXML committee defined in May 200 I detailed security specifications for
registries (http://www.ebxml/org/ebrim2.pdf). These requirements apply to authentication,
integrity, and confidentiality. They specify, among other things, that each request must be
authenticated and any known entity can publish or view what has been published. Their
security model doesn't reflect the classical security models; instead they have defined a
rather ad hoc model which mixes model and implementation aspects. It is also not clear
how these specifications relate to the UDDI specifications; that is, both specifications refer
to catalogs, but will they be coordinated? On its part, the WSDL committee has not said
anything about security.

One can (and should) use domain-based security according to document contents. There is
already a good amount of research on XML security and a standard, XML Access Control
Markup Language (XACML), is under development. This language is based on the access
matrix model (see Summers) and can define authorization rules for each element of an XML
document or for whole documents. A rule has a subject (requesting entity), a right (read,
write, etc.), an object (the document element), and a condition (for example, day of the
week when access is permitted). XACML is being developed by a special technical
committee of OASIS (http://www.oasis-open.org/committees/xacml/), and it combines
work of the IBM Tokyo Research Lab and the University of Milano, Italy. This is a well
thought out standard based on sound principles and should be used for the security of
repositories and storage of Web Services.

Similarly as for transmission, each element of a document can be encrypted according to the
XML Encryption standards mentioned later. Finally, the document schemas, DTDs, and
DOMs can also be used to provide security. Because documents may contain links to other
documents, the security constraints applied to a document must consider also the security of
these links. These aspects, however, are mostly at the research stage and just starting to be
considered in products.

Because Web Services are used in distributed environments, their data, code, or descriptions
must move across different security domains. If a Web Service moves to another security
domain, it must carry its security restrictions so that the other domain can properly handle the
Web Service. This propagation is done through the Security Assertion Markup Language
(SAML, see http://www.saml.org/ and http://www.oasis-open.org/committees/security/).
SAML defines authentication and authorization assertions encoded in XML. Similarly to the
ebXML registry model, this security model appears rather ad hoc and does not follow
standard security models, which may result in inconsistencies. Nevertheless, SAML has
already been incorporated into several security products.

294

www.manaraa.com

Web Services Security

The Communications Level
The following level is defined by the Simple Object Access Protocol (SOAP). There are other
protocols proposed for this level, but they have not gained general acceptance. SOAP itself
has no security; all of its security comes from the SOAP Security Extensions. These extensions
have been defined by the W3C XML Encryption Working Group
(http://www.w3.org/Encryption/2001/). One of these standards, XML Encryption, defines a
process for encrypting and decrypting messages considering the granularity of the message
contents. This can be as small as one element (including start/end tags) or apply to the
element content (between the start/end tags). Super-encryption is possible, where the whole
message with parts encrypted can be encrypted again, as is done when SSL is used for secure
transmission over HTTP. A variety of encryption algorithms can be used, including the
Advanced Encryption Standard (AES, see http://csrc.nist.gov/encryption/). There is a related
standard for digital signatures, also from the W3C.

A SOAP message includes a header and a payload. As shown in the following diagram, SAML
assertions can be included in the header or in the payload:

tran_~~-~~!--
xp message
r--;

I : •••
l

' I
' '

I ! --~-:--~=---~-------: ____ -=~--~~:~_--_-~:--:~~~--~~------~--~~----------
XML encryption protects the secrecy of the message. A Public Key Infrastructure (PKI) can
be used to provide authentication, digital signatures, and key distribution. This PKI is based
on XML Key Management Specification (XKMS), intended for the integration of PKI and
digital certificates. For example, digital signature processing can be delegated to a Web
Service in order to simplify the PKI structure. XKMS is an open standard that applies to any
vendor PKI approach. The XKMS uses two specialized standards:

o XML Key Registration Service (X-KRSS), for the registration of key pairs and location of
keys for later use.

o XML Key Information Service (X-KISS), that defines validation and location information
associated with a key. This standard can be complemented or replaced by XML
Trust Assertion Service Specification (XTASS, see http://www.oasis
open.org/committees/security/docs/draft-xtass-v09.pdf), which provides some
higher-level functions, such as validation using SAML.

295

www.manaraa.com

Eduardo B. Fernandez

Web Services Framework Providers
There are a few companies that have developed frameworks to host Web Services. These are
companies that sell operating systems, web servers, component lines, tools, and other
structures to support the development and deployment of Web Services. Some of these are:

IBM Web Services
There is a new version ofWebSphere Application Server, the Web Services Business
Integrator that will allow the MQSeries to deliver SOAP messages. IBM's DB2 Version 7.2
has a new XML Extender, where Web Services can access a DBMS and can store SOAP and
UDDI data.

The security of W ebSphere is considered to be good. W ebSphere has several levels of security
and uses Role-Based Access Control (RBAC) . It was developed by Tivoli. See http://www-
1 06.ibm.com/developerworks/webservices/ for more.

Microsoft .NET
Microsoft has created a framework to develop and host Web Services. This framework
includes components (.NET components), ASP.NET to build the components, and a series of
servers to host the components. The components can be built following a Role-Based Access
Control model and can use several authentication approaches, including Kerberos. They have
adopted the XKMS standards for handling certificates and data encryption. Overall, this
appears as a well-structured security architecture and implementation. See
http://www.microsoft.com/net/ for more details.

Sun Microsystems
Sun's Open Net Environment (Sun ONE) architecture is based onjava components (J2EE).
Notice that this is only an architecture, to be adopted by other vendors, although Sun has its
own implementation based on its iPlanet server.

A Web Service can use a policy engine to dynamically adapt processing and/ or results
according to rules based on user identity, authorization levels, and other contextual
information. The user and policy information is stored in the Lightweight Directory Access
Protocol system. Sun uses PKI and Kerberos for authentication and message protection, and
SAML for exchanging security information. The Web Services reside in Sun's iPlanet server.
This uses Role-Based authorization with role hierarchies, administrative privileges, and
domains for segmentation of roles. Each domain has one administrator. A "superuser"
administrator controls all domains. It also has several authentication options. This security
architecture is close to that of .NET, and at this level there is no clear advantage for either
approach. See http://www.sun.com/sunone/ for more details.

296

www.manaraa.com

Web Services Security

Hewlett Packard
HP will be one of the hosts for repositories and Web Services. HP has a secure version of the
Unix operating system, the Virtual Vault, and a secure Web structure, the Praesidium. Most
likely these will be the basis of their security. This is a strong supporting structure, but they
have not defined any specific approach at the Web Services level. See http://www.hp.com/ for
more details.

BEA Systems
BEA uses their WebLogic application server to host Web Services. This is based onjava
J2EE components and shares their good security properties. They use security products such
as Netegrity or Oblix to provide security to Web Services. See http://www.bea.com/ for
more details.

web Methods
This is a Web Services integration platform that supports XML, SOAP, and WSDL. They
claim to have good security but show no details of how is this accomplished. See
http://www.webmethods.com/ for more details.

Web Services Providers
Several companies that specialize in component development are converting these into Web
Services. They are responsible for the contents of the Web Services they provide. Web
Services can be implemented in any language that can process XML, and may include a
variety of functions. They may be quite complex and hide Trojan Horses or be infected with
viruses or worms.

Certifying that a program doesn't contain malicious software is what computer scientists call
an undecidable problem; there is no method to guarantee that a given program is free of
malicious code. Web Services will be trusted based on their origin and general fame, but there
is no guarantee for the consumer. Certified software only proves the origin of the software and
can guarantee a given functionality; there is no guarantee of the security of its contents.
Naturally, vendors who develop their services carefully will be more trusted. As David
Guinan said in his Software Development East 2001 keynote speech, Web Services are about
trust. Some of the current providers include the following.

297

www.manaraa.com

Eduardo B. Fernandez

Microsoft's .NET My Services {Formerly code-named
HailStorm)

This was initially a set of Web Services from Microsoft that provides a centralized way to
store and access user data, reachable from anywhere through the Internet. Services were to
include calendar, wallet, and notification, among others. Users would be owners of their
data and can check who has had access to it. Users must log in through Microsoft's Passport
authentication service. Services and data were to be kept on Microsoft's servers. Recently,
however, this plan has been withdrawn due to a number of contributory factors. Principally,
at this stage in the development of Web Services people do not feel comfortable with
trusting all their personal data to a third party. Microsoft is said to be taking steps to
provide .NET My Services as an internal authentication and authorization solution for
companies with disparate, distributed systems .

. NET My Services security partially depends on the strength of their authentication system,
Passport. Passport uses a centralized repository of authorized subscribers but it can also use
more sophisticated approaches, including Kerberos, an approach considered quite strong. The
problem is in Microsoft liS Web server, a system that has rather poor security and has been
hacked many times .. NET My Services doesn't use SOAP's security, another negative aspect,
because by not following its security standards it is harder to ascertain their level of security.
Microsoft is well aware of their low security image, and is working to improve the situation by
tightening up security in all their products.

Bowstreet
Provides a methodology to build Web Services embodied in the Business Web Factory
product. This usesjava components and can use BEA, IBM, and Sun ONE platforms. See
http://www.bowstreet.com/ for more details.

SAP
Provides a variety of business solutions components that are available for enterprise e
business requirements. See http://www.sap.com/ for more details.

Security products
Several companies provide products to provide security for Web Services. We enumerate
below a few of them.

Netegrity
The TransactionMinder is a product for management and security of Web Services. It follows
SAML and XKMS. It can support Sun ONE, MS .NET, Oracle 9i, and BEA Web Services.
This product is an extension of their earlier product SiteMinder for the security of web sites.

298

www.manaraa.com

Web Services Security

The facilities in the Delegated Management Services (DMS) of Netegrity follow closely the
proposals we made in 1979 (C. Wood and E. B. Fernandez, "Authorization in a Decentralized
Database System," Proceedings of the 5th International Conference on Very Large Databases, 352-359,
Rio de janeiro, 1979). In that paper we proposed to separate administrative roles from
operational roles; administrators had a special set of rights and we presented policies for
delegation of those rights. It was also possible to assign users to roles; create, modify, and
delete users; create, modify, and delete organizations (domains) and their administrators. Most
of these functions are present in DMS. See http://www.netegrity.com/ for more details.

Securant
This is an access control system where we can define users, groups, and realms (domains). It
can apply security constraints dynamically. There is transaction authorization and delegated
administration. Other features include Single Sign-on (SSO), policy evaluation, auditing, and
reporting. It was recently acquired by RSA to complement their PKI systems. See
http://www.rsasecurity.com/ for more details.

Oblix
Oblix includes facilities for user profiles (Identity service), authorization (Access), and
administration (Presentation). Their new product, NetPoint 5.0, includes AccessXML,
IdentityXML, and PresentationXML. AccessXML uses SAML. They also support security for
LDAP, and have recently announced the integration of their product with .NET Passport. See
http://www.oblix.com/ for more details.

Grand Central
Grand Central provides a specialized network to securely interconnect enterprises and
manage the use of Web Services. The network interfaces apply authentication and Role-Based
Access Control at the message-or document-level of granularity. See
http://www.grandcentral.com/ for more details.

Quadrasis
Quadrasis emphasizes the need for unified security across the layers and units of an
organization. Policies should be uniformly applied across domains and should be simple to
use and administer. This system uses SSO, SAML, centralized audit, and an administrative
structure to accomplish these goals. These are embodied in their Enterprise Application
Security Integration (EASI) Framework that centralizes the control of authentication and
authorization. See http://www.quadrasis.com/ for more details.

WSBANG (Web Services Broker and Network Gateway)
This is a Web Services broker marketed by Primordial, a proxy server to manage the Web Services
consumed by a given company. It performs activities such as monitoring behavior, metering, caching,
and others. It can be used for authentication; storing passwords, certificates, and authorization
information. WSBANG can also be used to enrich and transform SOAP messages. It complements the
work of a secure network such as Grand Central's. See http://www.primordial.com/ for more details.

299

www.manaraa.com

Eduardo B. Fernandez

The Supporting Levels
All this considers the Web Service levels only. But how about the infrastructure needed to
support them? There are several more levels to consider here: web server and application
server levels, database level, operating systems level, and communication levels (not present
in the following diagram). All these levels have been studied in the classical security literature
(Summers). We consider the most important, one by one.

processes

r- ------------i
! Components l Application

! _.[J 0 ! Server
t______ ---- ---------~ ___ :

~. D l_.,....y) memory

\

•••

\ .
\

\
\
\

file o
system

,'/

Appl ication

Servers

DBMS

OS Uti lit ies

OS

Hardware

The web server and the application server define a presentation and business model level,
respectively. For web servers, Apache has shown to be quite strong, due to its open design
and simple structure. On the other hand, Microsoft's liS is quite weak, although hopefully
their new servers should be better. IBM's WebSphere and Sun's iPlanet use role-based access
control and appear to provide a good basis for security. Application servers implement their
business models using components. The market here has narrowed down to two component
architectures: Microsoft .NET and Sun ONE. Both architectures provide a standard set of
authentication services and authorization based on Role-Based Access Control. Both
architectures appear to have a good level of security; in fact, the component level is the
strongest in both systems, the weaknesses appear in the web server side.

300

www.manaraa.com

Web Services Security

The Database Management System (DBMS) level is also very important because the Web
Services and their descriptions must be stored in some type of database. DBMSs usually have
good authorization systems but these can be bypassed from web servers that run with high
privilege; for example, in Unix systems the web server programs run with root privileges.
DBMSs are supported by operating systems and use their file systems for data storage. There
are only three varieties of operating systems in general use and they all have had serious
security problems, having been hacked many times. In particular, their mail servers have
appeared to be quite vulnerable, both Unix Sendmail and Microsoft's Exchange have been
attacked many times. From these, the whole operating system can be compromised because of
poor isolation design. A few hardened operating systems exist, such as HP's Virtual Vault and
Sun's Trusted Solaris, and should be used in applications requiring high security. The new
Microsoft operating system, Windows XP appears much better in this sense than its
predecessors.

The communications level of current systems is quite strong with respect to security. Message
transmission can be protected using symmetric encryption algorithms, such as the new
Advanced Encryption Standard (AES). These algorithms have been shown to be quite robust.
Digital signatures, authentication, message secrecy, and non-repudiation can be obtained
through PKI systems. The corresponding aspects of Web Services are based on this accumulated
knowledge and appear to be equally strong. Web Services can use SSL for end-to-end
encryption, which should assure the confidentiality of messages, although there are concerns
about the performance overhead incurred. Firewalls are important for general-purpose security,
and they will have a role in Web Services security by controlling the source of requests. A
serious problem in networks is the Distributed Denial of Service (DDoS) problem. This problem
occurs when multiple unprotected systems are penetrated and used as slaves to send large
numbers of messages to a target. Web Services are vulnerable to new forms of these types of
attacks (see http://www.webservicesarchitect.com/content/articles/deJesus01.asp), and
firewalls can be useful to stop them.

Conclusions
We have looked at most of the issues that have an effect on the security of Web Services. Web
Services are indeed a very promising technology, and their use will continue to increase. We
need, however, to be aware of the potential security problems that may occur. We have
history as reference but undoubtedly there will be new problems. Currently, the Internet is
not a safe place. The problem with many of the existing systems is that their software is of
poor quality, written without regard for sound software engineering and security principles.
There are two types of software errors that may lead to security problems: design errors and
implementation errors. Design errors come from lack of awareness of security principles
during development; they are the hardest to correct. Implementation errors come from coding
errors and can be fixed through patches, although this is not viable in some cases. Many
systems are too complex and they are hard to configure, which brings new exposures.

301

www.manaraa.com

Eduardo B. Fernandez

This situation is slowly changing, as companies are realizing that systems should be developed
considering security as an integral part of their design and implementation. A good security
model is basic to producing a consistent and complete security specification that can be
realized in the language used to implement the system. The access matrix and Role-Based
Access Control models appear as obvious choices for authorization models that can guide the
design of a secure system. Object-oriented approaches using modeling languages, such as the
Unified Modeling Language (UML, see http://www.omg.org/uml/), are necessary to develop
secure software (see E. B. Fernandez, "Patterns for secure system design",
http://www.cse.tau.edu/-ed); the code-only approach for building systems is one of the
reasons of the poor quality of some systems. On the positive side, we already have some
promising security products and the basic frameworks for Web Services have a sound security
architecture. Further, cryptographic measures have solved some of the important security
problems, such as authentication, message confidentiality, signatures, and non-repudiation,
and all their power can be applied to Web Services as well.

When we try to predict the future we have a rather confusing state to consider: it is not yet
clear how all the security levels fit together and there is much change with new products and
evolving standards. New sets of development tools are appearing, and their use will have a
direct effect on the security of the products developed with them. Another aspect that has an
effect on security is the way reliability is provided; security and reliability affect each other.
Finally, privacy is another concern that will become important when more personal
information is stored in Web Services; the Platform for Privacy Preferences is concerned with
this issue (see http://www.w3.org/TR/P3P/#introduction). Although we have pointed out many
possible problems, overall we see things improving, many companies and users realize the
importance of security, and what is more encouraging, are starting to do something about
putting security in their products or requesting security from vendors.

302

www.manaraa.com

Web Services Security

303

www.manaraa.com

Author: Whitney Hankison

• Strategy Overview

• Guidelines

• Components

• Configuration Alternatives

/
.f,:; .

' '

www.manaraa.com

Network Security for Web
Services

Security is a broad and important topic that needs to be considered when configuring a
network to support the Web Services infrastructure. In this paper we will attempt to outline
what the concerns are, some steps to remediation, and some further sources of information. In
addition we will approach security from a programmatic standpoint and discuss measures
developers need to take to add to the security of a Web Services application.

To begin, we will look at some overall network security problems and remediation
independent of what core operating system is used. We will then be featuring details from a
Microsoft Windows 2000 and Internet Explorer perspective regarding configuration of
software and permissions for users. After this, we will identify some hardware solutions that
assist in securing the network. We'll transition into programmatic security by discussing some
of the new Microsoft .NET infrastructure strategies and the section finishes with a discussion
of the uses of certificates. At the end of the article we'lllook at the overall business issues to
consider when looking at security and what the costs are to implement the environment we
will be outlining. Let's begin by looking at an overall strategy for security within a network.

Strategy Overview
The purpose of this section is to provide an overview of the physical security and identity
security aspects of utilizing a network-based computer system. We will discuss how physical
security is important to consider in protecting a network from unwelcome users and how
identity security can play an important role in determining who accesses important corporate
files. Independent of what the core operating system is within the network environment, there
are some common rules to network organization and authentication which are worth
identifying. One of the first of these topics is that of physical security.

www.manaraa.com

Whitney Hankison

Physical Security
If a malicious user gains physical access to a machine, that machine is compromised. There
are many tools available that we will cover in the next section that can assist users in
compromising the security of the network. Once an intruder has gained access to the network,
they can set up programs that can be either malicious in nature or intrusive in nature. Some
programs that gather and send confidential information over the Web to other locations can
go relatively undetected. Other programs can corrupt or altogether delete information from
your network. These programs are really related to viruses due to their malicious nature, but
are different in their purpose being specific to a goal that the intruder is aiming to accomplish.
Without physical security, no other security measures are good enough to stop intruders from
doing what they want.

Physical security is maintained by ensuring that only authorized personnel gain access to
critical network resources. This can be accomplished in a number of ways. Many large
organizations house their servers in a central, secure location. This is a good idea also because
a central location is easy to control environmentally to ensure dependability of the equipment.
Organizations that require more of a decentralized configuration of their servers need to
ensure each site that requires a hardware resource provides an adequate location to house it.
The location should be secured and adequately maintained so that the equipment will last the
longest and not get compromised. Some of these disparate locations can employ methods like
locking, well-ventilated computer cages or storage room facilities. The key is to control the
physical access to the computer resource.

In addition to being concerned over server resources, we need to be aware of the physical
access to machines that hook into our network. If a machine is given access to log in to a
network, it needs to be physically located within a trusted area in order to prevent an intruder
from using it as a staging ground for gathering information and transmitting it from within the
enterprise. If a real concern is present and a computer must be housed in an insecure location,
there are additional hardware devices that can be used to authenticate users and lock out
intruders. These devices include card readers, fingerprint readers, and key readers. All of
them require the user to possess one additional piece of information, other than their user
information, usually in the form of hardware, to log in to the machine.

Identity Security
It is as important to protect the user identity inside a business, as it is to protect our credit
cards from being compromised over the Internet. Why? Because there are endless ways to
compromise an entire network by compromising a single user logon. We must keep in mind
that the people who want to gain access to a system by going around its security. Such
programs seldom do so without causing problems for the company along the way. We should
seek to implement a balanced security policy that ensures adequate security without
overburdening the user with compliance requirements.

306

www.manaraa.com

Network Security for Web Services

Each and every operating system environment has a form of identity security that needs to be
configured appropriately to secure the enterprise against the security-based attacks that
virtually all Internet sites go through. Again, each enterprise has users on the inside of the
corporation as well as users from the Internet accessing the web site. It is important to
develop integrity for identity security on the inside of the corporation that can flow to users
which we allow in from the outside of the corporation. User ID and password security are
important issues that always need to be addressed. Some common guidelines are:

1. Protect the user ID and password information by never writing it down, and not
sharing it with other users for any reason.

2. Passwords should be at least 8 characters in length, include capital and smaller
case letters, include numbers and special characters such as *&A 0/o$#@ or !.

3. Passwords should not be left the same, but be changed either on a regular basis,
which would be at least once a quarter, or on an irregular but frequent basis. The
latter would present an intruder with the challenge of not having changes occur
on a predictable schedule.

4. Passwords should never include a word that can be found in a dictionary nor end
in an S.

5. Passwords should not simply be changed back and forth between two primary
passwords, but be unique.

The guidelines above are some ways to slow down people who are trying to "crack" the
password in order to use it for their own purposes. There are several tools freely available and
easily found on the Internet that can crack passwords. These tools look for simple passwords
to crack first and can often crack a password that is less than 8 characters in a matter of
seconds. Longer passwords that include the recommendations listed above can take more time
depending on the computer resources the hacker is using to crack a password. It should be
kept in mind that if the system-level password is insecure then that makes the rest of the
passwords just as insecure as well due to the administrative privileges often associated with the
system level user IDs.

When it comes to identity security within an application, it is just as important for the outside
users to realize the importance of keeping their identity secure. When issuing user credentials
to people outside the corporation for use with a web application, it is recommended that
information that only that user would know is gathered for second-level authentication.
Gathering the secondary information can be accomplished when the user initially requests
user credentials for the web site and further ensures that someone is not trying to imitate the
user and gain access for other purposes. Information such as mother's maiden names, social
security numbers, and birth dates are commonly used. These, however, are publicly available,
so it is recommended the person also supply a keyword of their choosing that can be
prompted for as a "surprise" question every once in a while.

307

www.manaraa.com

Whitney Hankison

These surprise questions can deter unwanted users by creating an element of inconsistency
and unpredictability.

In addition to the above suggestions, there is hardware available that can assist in verifying
identity. The hardware includes devices such as retinal scanners, fingerprint and handprint
devices, and card readers. These devices hook up to a machine and become a required step in
the user authentication process.

Patches and Security Guidelines
This section will outline some useful web sites that give information about security, virus, and
patch information.

Microsoft-Specific Information
In the past year it has become quite apparent that some of the Microsoft products may have
security weaknesses. As viruses continue to exploit these weaknesses, Microsoft has come up
with both commitment and a stronger approach to dealing with the weaknesses in their
products. While they are working on these it is still important that people keep up to date with
the weaknesses and deal with them promptly as they are exposed. Microsoft has a few sites
that assist administrators in dealing with these, such as the http://www.microsoft.com/security
and http://windowsupdate.microsoft.com/ sites.

There is a Tools and Checklists section to the Microsoft site that deals with the most common
practices for securing a Microsoft product. They also have an e-mail service that
administrators can subscribe to in order to keep abreast of the latest news on security within
the various Microsoft products.

The Windows update site is the simplest way to have a machine analyzed for update needs.
The site checks the machine that accesses the site and then makes recommendations on
patches needed based on what is loaded already. This site is also an easy way to retrieve
product updates for applications network-wide.

Other Helpful Web Sites for Security and Virus Information
There are several web sites that specialize in security, computer crime, and virus hoax
information that administrators need to be aware of. The following screenshot is of the
Computer Security Institute site, which details information about computer crime and has
resources for intruder detection. They also give seminars on this topic. The address is
http://www.gocsi.com/.

There is also a U.S. Government organization which has a good website that lists more
security guidelines for Information Technology systems in general. This is the Computer
Security Resource Center under the National Institute of Standards and Technology. The
address is http://csrc.nist.gov/.

308

www.manaraa.com

Network Security for Web Services

One more site that is invaluable is from the SANS Institute (System Administration,
Networking, and Security). The site has the FBI top 20 list of vulnerabilities and lists the top
10 security loopholes in Windows and Unix systems. The site is located at
http://www.sans.org/.

The other issue that administrators should be able to deal with is virus hoaxes. Many times e
mails that list a critical virus, such as the Budweiser Dog Screen Saver, are simply a hoax sent
out to waste time and money of large corporations. Having said that, they are often forwarded
in good faith, so informing the workforce how to deal with virus alerts is a must; rather than
forwarding it to everyone they know, the details should be checked. Along with the common
virus software company sites such as McAfee and Symantec, a good hoax site is the F-Secure
site, located at http://www.europe.f-secure.com/virus-info/hoax/. The site gives lists of hoaxes
as well as other good information regarding the latest virus news.

Additional Security Software
Additional security that should be considered is software that functions with the corporate
firewall to monitor both incoming and outgoing requests and data for destination addressing
or questionable content. This software is called patrolling software and it can assist in
monitoring both incoming and outgoing traffic and create logs or even alarm administrators
when a potential for a problem is noticed. It can act as an Internet filter, as well as monitor
the Windows Security Log and create information useful for alerting administrators to
problems. One such piece of software can be found at http://www.gfisoftware.com/languard
for more information.

In addition to server-based patrolling software there is software that works in conjunction with
local firewalls that monitor and alarm the DSL Internet users of situations occurring, such as
incoming viruses that are blocked at the DSL router. One such piece of software can be found
at http://www.networkice.com/products/blackice_defender.html.

Security Infrastructure Components
In addition to what we've already spoken about regarding the software aspects to security,
there are additional steps needed from an infrastructure perspective that form the critical
gauntlet that stops intruders from getting where they want to be. Fundamentally, securing a
Web Service is very similar to securing any web site. At a network level, the topics that we
grapple with relate to the types of users who we want to gain access, what level of
authentication we find necessary to protect our resources yet allow our users access, and
securing the data that the Web Service needs to access itself so that users can't directly get at
that data.

309

www.manaraa.com

Whitney Hankison

Network Configuration
We've already spoken previously of many ways to provide software authentication to secure
the web site and ensure users must have valid credentials to gain access. One goal for creating
our network infrastructure is to prevent any intruder from getting to any destination. Getting
through many layers of security is always more challenging to a potential intruder than if just
one layer is presented.

Another goal is for the firewall to be configured so as to prevent some common ways of
bringing down a web site so that it can't respond to user requests. Such attempts by hackers to
accomplish this are termed Denial of Service attacks.

The Web server that contains the Web Service Site usually lives in an area of the network
called the DMZ, or demilitarized zone. This area is called this because it is open to the
Internet and has less security enforced than an internal portion of a network usually would.
The DMZ sits between the Internet and the internal corporate network, surrounded by
firewalls to shield against users who might try to gain access from the Internet to internal
network resources. The firewall usually filters traffic from the Internet and directs the traffic
coming from the web site machine directly to any internal resources, such as data servers, and
prevents any other resources from being accessed by traffic coming from the web site
machine. The DMZ and firewall concepts are illustrated in the diagram below.

Internal
Resource

Firewall

DMZ

Machine Hosting
Web Service

G
Firewall

The firewall mechanism can do two things for us: it can limit the traffic coming from the web
site to a specific IP address within our internal structure, and it can limit the type of traffic.
Traffic travels through areas of the firewall called ports. Different types of traffic get routed
through different ports. If a corporation opens up these ports for too many types of traffic to
get through it can become like there isn't a firewall at all, so care should be taken when
making these decisions. A good example would be where the firewall would limit the traffic to
data requests, refusing to respond to a request for another type of file.

310

www.manaraa.com

Network Security for Web Services

In addition to this methodology, internal servers generally have an authentication that is
necessary for any user to get to them. There are often special accounts on these servers that
the Web Server utilizes, which are additionally limited, so if that account gets compromised it
doesn't have as much power as an internal user would. It is most important to remember that
incorporating the firewalls and DMZ concepts into the network infrastructure is a critical step
to protecting the enterprise data. Without these the corporation is open to attack as soon as a
web server is installed and linked up to the Internet.

As well as these critical components there are other steps that need to be considered. If there
are subscribers to a Web Service that are frequently connected to your server, or if there are
vendors that work with the corporation but are located off-site it is wise to invest in VPN
(Virtual Private Networking) technology to enhance the security of the communications
between such clients. VPN rides on top of the current Internet system of communication to
provide secure, encrypted communications between two points in the Internet. It is often
termed a "secure pipeline" through the internet because the data riding through the pipe
cannot be accessed, but just in case it were, it is encrypted and therefore would have to be
decrypted to be readable. The diagram below illustrates this concept.

Internal
Resource

Firewall Firewall

0
VPN

In addition to firewalls and VPN security, the internal network infrastructure that supports
day-to-day communications within the corporation should have protection from any malicious
user sending data to a specific destination. The internal network components are called
routers, and they serve the function of routing network traffic, called packets, from one
destination to another. The routers can read the information regarding the content, source,
and destination and can filter out packets that should not be going into the network. Leaving
network router devices too open can be dangerous should a program get through the VPN or
firewall security we have in place surrounding our web servers.

311

www.manaraa.com

Whitney Hankison

Program Deployment Infrastructure
With Web Services deployment we are working with web servers that share their resources
between multiple web sites and Web Services. When this is the case it is very important to
keep in mind that any one program can bring the Web Server down, thus disabling many
services and sites at once. Since this is the case, there is a need for a program deployment
infrastructure to be in place within the organization.

Beyond the standard of having a separate development server, there needs to be a test lab or
test server where developers can test their code pre-deployment. This lab should be
configured as close to the production environment as possible to catch any conflicts. Between
the lab and production areas of the network should be a staging area where programs are
placed before rolling out directly into the production environment. The staging area produces
a controlled environment where code changes and new code can be placed into the
production environment in a coordinated and timely fashion. This also gives us an area to
provide rollback measures in case the newly implemented production code needs to be rolled
back to the previous version.

Monitoring and Auditing
Once the hardware infrastructure is in place, it is by no means a completed project. Operating
systems come with tools, as well as the addition of firewalls, VPN, and routers that need to be
used on a regular basis to monitor the activity on the network. There are additional tools that
can span all of the layers of the network that can help us troubleshoot areas of our
applications by analyzing the traffic generated from them. A list of things we should audit
includes, but is certainly not limited to, the following areas in our operating system:

0 Failed logon attempts.

0 Failed attempts at gaining access to a resource (such as a file).

0 Failed attempts at using administrative privileges.

Within our network, from our firewalls and routers we should monitor:

0 Types of data coming through, and which ports are being used.

o Traffic level at given times during the day, determining a normal level for a given time.

o Types of traffic generated by various computers, determining a normal level and type.

In addition to a day-to-day effort in monitoring and auditing, once the network is configured
and the technical staff have implemented their plan, a security audit from an external agency
is truly a must. There are several agencies that perform these audits, and they can evaluate the
current configurations, list problems, and even recommend remediation procedures.

312

www.manaraa.com

Network Security for Web Services

Security Configuration Alternatives
Security configuration, separate from hardware and programmatic solutions presented above,
includes Certificate security, encryption, and global user cache alternatives such as the
Microsoft Passport type of security. Currently the tools in the industry are specific to the
hosting platform chosen for the Web Service, and there needs to be a revolution in this area
to provide an approach that is hardware, operating system, and development tool
independent. This "next step" is something that is on many minds, so I'm sure we'll see a
revolution in this area soon. Until that point, we still need to review what we have today to
make an intelligent decision on supporting the most versatile yet secure answer that meets the
needs of our specific Web Service implementation.

Certificate Security
Certificate security is a standard for providing the highest level of software-based security for
a web site. Certificates are based on a standard called Public Key Cryptography, and are used
through implementing SSL (Secured Sockets Layer) for a web site.

You can tell a web site is using SSL because the address will be preceded with https:/ I instead
of http://. A notification box will often appear that informs you the site is using SSL.

On Internet Explorer, a padlock will appear in the right-hand part of the status bar on the
bottom of the screen as well. The SSL implementation ensures that all data going between the
web site and the user's computer is encrypted and secure. You will generally see this occur
when you are on a site that is dedicated to sales of merchandise and asks for confidential
information such as credit card numbers and expiration dates.

Certificates are issued by a very few companies and are issued uniquely on a site-by-site basis.
The publisher signs a certificate so that it can be verified. When a certificate is issued by the
web site to a client who is signing up for the service that the web site provides, the certificate
comes across with Public Key Cryptography information attached.

In Internet Explorer, you can see the certificate that is attached to a web site by going to File I
Properties.

If you then click the Qertificates button on the properties screen you will see the certificate
information screen.

Public Key Cryptography is a standard by which there is an exchange of information between
two individual computers that only can be known by those two computers. The information
that is exchanged is in the form of keys, one being a public key and one being a private key.
As we said above, when a site issues a certificate to a user the key information is established.
There is a public key, which is widely distributed by the web site to all users of the site, and a
private key through which the secured messages that are sent between the two machines can
be decrypted.

313

www.manaraa.com

Whitney Hankison

For instance, if I were to buy a ticket on Expedia, I would need to transmit my credit card
information across the Internet in order to guarantee my purchase.

First I send a message that would relate to "I want to buy a ticket, here is your public key." The
server would use the private key to verify that my certificate identity is valid, and then send a
message back asking me for my credit card information. I would use my private key to ensure
that I received the request from the appropriate computer, and then I could reply with my
information. Communication would continue in this manner until the purchase was complete.

Essentially, secure communication is established between the two computers by a series of
encryption and decryption steps that are performed based on verification of identity by
issuing a certificate. Using certificates does slow the transaction, but it is currently the highest
guarantee that we have to ensure secure communications.

Global Cache Security
Global Cache Security uses a cache of login information that lives at a central location on the
Internet. The Microsoft Passport site is one example of this type of authentication. There are
more sites subscribing to this type of security, which uses personal information to establish a
user ID and password, then sends the information to an e-mail address. Once the user
receives the e-mail they can use their user ID and password to get onto the site. The sites that
are using this methodology do not generally need the level of security of certificates, but do
want authentication credentials to be able to access their site. Sites with sensitive or restricted
information would find this useful.

The thought behind this type of security is to form a consortium between web sites that accept
the identity of a user based on that user establishing the credentials on one site. For instance,
if I go to http://www.microsoft.com and want to access their MCP site I need a Passport. Once
I establish the credentials I can then go to any site that will accept that Passport credential
without having to re-establish it for .each site I go to.

Custom Security
Custom Security is really the grouping that encompasses security done in a programmatic
fashion. There are many web sites that have an authentication page, where the user provides a
password or other information. This type of authentication generally utilizes a repository of user
accounts that are internal to the corporation that hosts the web site. For instance if I hit my
company web site and access a secure area as an employee, the site authenticates my credentials
against an internal database server and grants me access based on the credentials I typed in.

Custom security can include custom encryption strategies. There are many publicly available
encryption algorithms that programmers can use to encrypt transmission, all of which add
overhead to the web site. Remember that encryption can be as fundamental as scrambling a
message based on a certain set of rules, and unscrambling it at the other end based on the
same set of rules. If the set of rules is too easy to break, then the encryption is not very useful.

314

www.manaraa.com

Network Security for Web Services

Business Strategies
A business that is using Web Services architecture immediately assumes risks and costs; it
needs long-term commitment and has to be able to commit resources to the infrastructure
implementation. As we've seen, there is a lot to consider from both the programming and the
infrastructure sides to a Web Service implementation. From a business strategy point of view,
it is most important to take all aspects into consideration and plan for the implementation.

Many businesses take on implementations after the fact as a result of other business decisions,
and the implementation ends up being rushed or incomplete. The business decision to be able
to support Web Services and utilize them as a revenue-producing agent, or simply as an
internal business tool needs a lot of consideration and planning. The risks involved in
exposing a corporate infrastructure to the Internet have been outlined above, and can have a
detrimental effect on the business should the implementation be incomplete. Potential
questions are many, and just a few that need to be assessed regarding risk include:

0 How dependent on this revenue is the company, and what level of downtime are we
willing to put up with from the infrastructure supporting it?

0 To what extent is the company willing to expose its assets to potential intruders?

o What level of financial commitment is there toward guarding against intrusion?

As with all projects, implementing Web Services has a cost. There is hardware to buy,
personnel to pay, ongoing maintenance for the equipment and software. Some of the
questions that should be answered in the cost area would be:

o What is the budget for the project, and is it enough to do it right?

o Are the ongoing costs going to be covered by the revenue generation of the
implementation?

o What is the return on investment of the implementation?

0 Does the company currently have the people to handle the additional security
requirements, or is there need to budget for additional personnel?

As far as long-term commitment goes, there is hardware and software maintenance, and the
dedication of personnel to the ongoing task of security changes on the Internet. Server
hardware has a limited lifetime similar to that of desktop workstations, and so there needs to
be a plan of replacement and upgrades. When a corporation has an Internet site, response
time can be a major factor in revenue generation, so the hardware and software on the server
needs to be maintained.

Keeping up to date with the security of servers and applications that are exposed to the
Internet is a daily task when done correctly. It can truly take a full-time position within a
corporation to keep up with it.

315

www.manaraa.com

Whitney Hankison

There is the daily monitoring and review of reports that should be undertaken to guard
against intruders and detect new ways they might attempt to get through. There is also an
ongoing task of monitoring authentication credentials to make sure old, unused credentials
aren't available for use in the wrong manner. Every week new viruses come out that need the
servers to have patches installed so that the they can guard against a new strain.

The last, but perhaps most important, area to talk about in terms of business strategy is
regarding disaster recovery. Many businesses see disasters as just natural events that could
interrupt the business flow, but disaster planning is really a day-to-day plan on alternative
ways to do business should it get interrupted for any period of time.

For instance, if a primary revenue source is a sales Web Service that links to many other
dealers of a product and a major telephone outage occurs, that revenue source could be
interrupted for a fairly long period of time. In addition, say the outage occurs on a day where
payroll is being transmitted to the banks for automatic deposit into the employees accounts,
and there is a deadline for that transmission. All of a sudden, not only is the business revenue
interrupted, but perhaps the revenue is interrupted for employees as well. There need to be
plans in place for even minor emergencies, so that day-to-day critical business processes can
be continued. Having each department within the corporation prepare an alternative plan in
case these processes get interrupted is critical.

A good example of this type of planning was when the world was planning for the potential of
Y2K interrupting computer usage for an extended period of time. It is wonderful that there
was no need for such plans in the end during that period of time, but the fact that plans were
generated and in place was a very good outcome to the possibility of something going wrong.
We really should be just as diligent when there is not a predictable potential for such
problems, because you never know when such plans could save the entire business from
financial disaster. Some of the questions to consider when formulating a disaster plan for
computer system recovery are:

316

a What is the maximum downtime that the corporation could sustain in case of outage?

a Are there daily backups available in an offsite location should they be needed?

a Is there adequate documentation for the server configuration that supports the Web
Service should it need to be replicated to another machine?

a Are the operating system software and other software required to restore the backup
tapes available to be reinstalled if necessary?

a Is there more than one person on the staff who understands the configuration of the
Server and Service in case the primary support person is unavailable?

a Are hardware available for substitution and timely repair contracts in place in case of
hardware failure? Or if critical enough, is there redundancy currently in place to take
care of such failure?

a Is there business process documentation available should an automated procedure
need to be completed manually?

www.manaraa.com

Network Security for Web Services

These are just some questions that should be included, and as each gets answered many more
questions will be generated by the answer. There are tools available and sold with most
backup software that facilitates disaster recovery. Offsite backup storage and configuration
documentation truly play a critical role in disaster recovery. It is always a good plan to go
through a disaster recovery scenario during the implementation phase of a server so that the
configuration documentation can be as accurate as possible.

Conclusion
This paper has attempted to cover some critical areas of security within the organization's
network infrastructure, programming, and Web Service development. We covered the
following areas:

o Security within the network servers, workstations and hardware.

o Identity security through logins and authentication mechanisms.

0 Windows 2000 approaches to security within the operating system.

o Internet Explorer security strategies.

0 Internet sites which help with patches and security solutions.

0 Infrastructure design solutions for security including firewalls, routers and VPNs.

0 Programmatic concepts to consider about security.

0 Highlights of programmatic security within the Microsoft .NET environment.

o Security configurations including certificates, global cache, and custom security.

0 Highlights of business strategies dealing with security issues.

It is important to create a heightened awareness in both infrastructure and programming
personnel so that security loopholes continue to be guarded against. There are many security
concerns evolving today, and as the Internet is more accessible to everyday computer
subscribers these concerns will continue to mount. There is an ever-growing resource
targeting security, and many companies are building alliances with the security experts and
leading anti-virus software manufacturers to provide integrated solutions to ongoing security
problems. We have a way to go, and it is an ever-changing problem we are facing in this area,
so vigilance will be the only answer.

317

www.manaraa.com

Author: J0rgen Thelin

• Remote References in Existing Middleware

• Uses of Remote References

www.manaraa.com

Remote References and XML Web
Services

What are "remote references", and how do they relate to distributed object technology? Are
the concepts of a remote object reference still applicable for Web Services technology? This
paper describes the software architecture concept of remote references and shows why they
are best avoided when using XML Web Services due to the fundamental mismatch between
the service-oriented middle ware approach of Web Services and the object-oriented
middleware required to support a remote reference architecture. It assesses the impact of
remote references on interoperability between different Web Service infrastructure products
and applications, and examines some ways architects and developers can minimize the
problems in this area. It also examines the problem of exposing as a Web Service an existing
system that already uses remote references extensively as remote factory objects (which is a
very common approach in mature CORBA systems), and how a simple "fa~ade application"
can be used in this context.

What Are "Remote References"?
A number of different technologies exist for building distributed client/server applications,
but the most common and popular approach today is to use some type of "distributed
objects", although this may well be replaced shortly by the "service-oriented" approach of
XML Web Services.

www.manaraa.com

Jorgen Thelin

Distributed Object Technology
Distributed object technology allows object-oriented software components running on one
machine to be accessed from client programs running on different computers. It also allows
calls between processes on the same machine where the "local" and "remote" hosts are
actually the same computer. This allows distributed applications to be written without having
to worry about the ultimate location of the server process - whether that is on the same
computer, the same local network, or halfway across the world in the Internet. This is the
important concept of "location transparency". This allows such things as testing an application
in a development environment with both client and server on the same machine then, for
production deployment, running each on different, bigger machines to maximize throughput
of the system.

Distributed object technology is an amalgamation of the earlier concepts of remote procedure
call (RPC) technology plus object-oriented programming approaches. Examples of distributed
object technology include java RMI, CORBA, and Microsoft DCOM.

For a distributed object system to work, there are five parts in the total end-to-end
communication picture that are common to all different implementations of this technology:

320

Client-Side Computer Server-Side Computer

1. The application logic itself, running on the remote computer.
This is the actual implementation of the remote object, written by the user.

2. A server-side RPC skeleton, running on the remote machine.
This is a piece of middleware code that handles un-marshaling the parameter data
for the call from its on-the-wire format used by the transport medium. The
skeleton places the call invocation to the appropriate object instance, collects the
return value plus any "output" parameters, and marshals all this data back into
the transport format for return to the client. A return value is just a special output
parameter that the middleware recognizes and treats specially. There can only be
one "return value", but there may be zero or several output parameters.

www.manaraa.com

Remote References and XML Web Services

Some middleware technologies (such as EJB) only allow return values, while others
such as CORBA support output parameters too. In general the only real distinction
between a return value and an output parameter is how they are defined in the
appropriate interface description mechanism used by the middleware (such as IDL
for CORBA), and the programming model used to access the values. The
middleware handles all the complexities of how many values are expected, and what
to do with them at each end.

3. A transport channel.
Some form of communication channel is required between client and server. This
may take the form of a TCP socket, or some more structured channel such as
message-oriented middleware or a CORBA ORB. Ultimately, this will equate to
some form of physical network connection between the RPC skeleton and stub
over which the call request and response data can be exchanged.

4. A client-side RPC stub, running on the local client machine.
This is the piece of middleware code that marshals the input parameters, passes
the call to the transport medium for sending to the server-side skeleton, then
collects the response data if any, and unmarshals that data back to the client
program. With synchronous calls, the middleware waits for the response before
returning control back to the client program; with an asynchronous call, control
returns to the client program as soon as the request has been sent, and the
middleware will make a call back to the client program with the response data at
a later point in time once the data is returned from the server. Asynchronous calls
allow the client program to perform other actions while waiting for the response.
Typically RPC is equated with a synchronous call, although this is not actually a
strict requirement.

5. The client application itself, running on the local machine.
This is the user's program, and usually provides the presentation and user
interaction functions of the distributed system.

For the sake of brevity, we will not discuss the numerous differences between the different
types of distributed object technology systems.

Definition of the Term Remote Reference
The phrase "Remote Reference", which is more accurately called a remote object reference,
is used to refer to the client view of the distributed object, which is primarily the client-side
stub for the distributed object running on the remote machine, but ultimately encompasses all
the other parts of the picture right through to the remote server implementation if viewed at a
sufficient degree of detail.

In contrast, a local object reference is the normal reference or pointer to an object in the
current program execution environment, although the results are similar - they provide a
separation and decoupling of the user (client) of the object component from the details and
mechanics of where that object was created and where it is stored.

321

www.manaraa.com

Jorgen Thelin

"Remote References" are therefore a way for object-oriented software components to interact
across process or machine boundaries, but with "location transparency" from the point of view
of the client program.

Examples of Remote References from Existing Middleware
There are several common middleware technologies that use remote references, although
sometimes using slightly different phrases to describe the concept:

CORBA
The CORBA standard (Common Object Request Broker Architecture, see
http://www.omg.org/technology/documents/corba_spec_catalog.htm) from the OMG
(Object Management Group) is based exclusively around remote references - all remote
CORBA objects are accessed by an objref (object reference), and the lOR (Interoperable
Object Reference) format is a standardized way to represent and store these object references
in a serialized binary form defined by the CORBA specifications. It is possible to pass an
objref as a parameter on a call to a CORBA object, or return an objref from a call as either a
return value or an output parameter. CORBA objrefs can either be transient (the object
references become invalid when the server implementation program stops) or permanent
(server implementation instances created on demand if necessary), and object references can
last longer than lifetime of a particular object.

CORBA objrefs are usually found through a look-up of a name in a CORBA Naming service
(CosNaming), by calling a CORBA Trader service (CosTrading), by calling a suitable factory
object, or by using a "stringified lOR" stored in a file on disk. CosNaming is the CORBA
specification for a "white pages" look-up system where a server can be looked up by its name,
while CosTrading is the CORBA specification for a "yellow pages" look-up system where a
server can be found based on the capabilities and attributes it has previously registered with
the CosTrading service. See the OMG web site http://www.omg.org/ for more details.

Interestingly, the ORBs (Object Request Brokers) implementing the CORBA standard have
mechanisms for converting object references into calls to server implementations in non
object-oriented languages. They do this by employing various activation policies and request
queuing mechanisms- see the CORBA specifications and language bindings for a non-00
language such as C for details of how this can be achieved.

RMI- Java Remote Method Invocation
All RMI objects are remote objects, and calls to these use their remote references obtained
through some form of registry look-up -usually either the RMI Registry process, or aJNDI
naming context. Normally RMI objects are transient, but the RMI Activation system provides
a means for "permanent" remote object references where an instance of the server object
implementation is created on demand to service the request if necessary.

322

www.manaraa.com

Remote References and XML Web Services

EJB - Enterprise JavaBeans
The Enterprise J avaBeans framework builds on top of the RMI or CORBA distributed object
technology by adding the elements of managed object life cycles, managed transaction
semantics, and declarative security policies to the basic RPC mechanism.

EJB objects can either be for Stateless Session Beans, Stateful Session Beans, Entity Beans, or
Message Driven Beans, but all provide a similar pattern for creating the object reference and
accessing the ultimate target object:

Client Program

I
JNDI Initial Context I

I
EJB Home Proxy

I"

I

I
EJB Object Proxy ~

Facto

Lookup

ry Refere ~
Create

----_Obje ct Refere nee

Call

EJB Server

JNDI Service

I n (Naming)

.I EJB Home

J R (Factory)

J EJB Factory I

1. Get a reference to the JNDI root context through the Initial Context factory object.

2. Obtain a handle object to the EJB Home interface for the EJB by performing a
look-up by name in the rootJNDI context.

3. Narrow the handle returned to give a local proxy object for the remote EJB
Home object.

4. Call a suitable "create" method on the home proxy, which will perform a remote
method call to the EJB Home object on the server and return a remote reference
for the actual EJB Object we wish to use.

EJB object references are mostly remote references, although EJB 2.0 has added support for
"local interfaces". These "local interfaces" are a way of accessing EJBs directly inside the same
process, through local object references while still maintaining the same parameter-passing
semantics and programming style used for a remote call. This results in reduced invocation
times since the usual remote transport and network layers can be bypassed.

DCOM
DCOM is Microsoft's RPC technology for making COM (Component Object Model) objects
available across process and machine boundaries. Originally, it provided the basic RPC and
object activation and life cycle facilities of RMI or CORBA, but over time it evolved to also
cover the higher-level framework functions of transaction and security management through
the combination of DCOM and MTS (Microsoft Transaction Server).

323

www.manaraa.com

Jorgen Thelin

In DCOM programming, the remote references are typically registered with a local service
manager, which acts as a registry for look-up of references to remote components based on a
GUID (Globally Unique Identifier) for the target interface of the COM component.

DCOM has now been replaced by .NET Remoting as the easiest way to make a component
accessible as a distributed object in a Microsoft execution environment.

.NET Remoting
Microsoft's new .NET Framework provides a standardized execution environment for
component-based applications. This framework operates across any programming language
and operating system that supports the .NET Framework Intermediate Language (MSIL). The
.NET Framework includes as standard extensive facilities for supporting the making and
receiving of remote method calls, including full control of object activation policies,
declarative security, and transaction attributes. Microsoft provides extensive technical
documentation on the .NET Remoting framework through the MSDN web site. For more
details, see http://msdn.microsoft.com/ and
http://www.msdn.microsoft.com/library/default.asp?url=/library/en
us/dndotnet/html/hawkremoting.asp.

Remote object references are obtained from an object URL specific to that remote object
type - providing a form of registry look-up.

Typical Uses of Remote References
There are several common architectural design patterns where remote references are used, as
outlined below.

Remote Procedure Calls
Now that the majority of new application development is done using object-oriented
languages such as java or Off', the vast majority of remote procedure calls are now done using
remote references.

The typical usage pattern is for the client program to:

324

1. Perform some type of look-up operation to obtain a suitable remote reference.

2. Perform an operation to create a local proxy object based on this remote
reference data- for example a narrow operation when using CORBA or
EJB, or transparently as part of some data serialization process.

3. Then use the local proxy for all calls to the remote object.

www.manaraa.com

Remote References and XML Web Services

One of the key challenges with this approach comes when using a strongly typed language
such as java or C#. Unless the appropriate interface class is available to the client program
both at design time and at run-time, it is impossible to write a program that uses that remote
object reference directly, and all method calls must be done through low-level reflection or
DII (CORBA Dynamic Invocation Interface) framework calls. This is what is known as the
Interface distribution problem, and can create many program packaging problems when
usingjava and to a large extent C# too.

The combination of remote references and an object-oriented programming language,
however, greatly simplifies the task of developing distributed clienUserver applications.

Remote Factory Objects
This involves an interaction style typified by the approaches to connecting to an EJB object:

Client Program

Remote Factory
Proxy

Remote Object
Proxy

"getObject"

Call

Server

Remote Factory
Object

Remote Object

A remote reference is obtained to a "factory object" such as the EJB Home object in our
example. This is a true factory in the sense of the Factory design pattern from the Gang-of
Four "Design Patterns" book (Addison-Wesley, ISBN 0201633612), even though it is a remote
server in this case. A method call is then made to that factory object, which returns another
remote reference to the "real" remote object itself (the EJB Object in this example). This
second remote reference is then used for the intended operations.

There is a rather subtle assumption in play here - the assumption that the programming
languages in use on both the client and server have an equivalent level of support for remote
method calls and object orientation.We further assume that suitable client-side transport and
RPC libraries exist to match the communication format and transport channel the server is
using, and that suitable classes and interfaces already exist in the language used by the client
side program to create a semantic match with the interface used by the server-side. Obviously
the easiest way to deal with this problem is to use the same programming language on both
sides (for exampleJava-to:Java). It is equally feasible to use a clearly defined transport format
(often binary) plus an abstract interface definition language and the appropriate language
mapping specifications (the approach taken by CORBA or DCOM). A final approach would
be to use a standardized RPC framework built on top of a standardized binary intermediate
language, which is the approach taken by .NET.

325

www.manaraa.com

Jorgen Thelin

Client Callback
The other major usage of remote references is for the distributed architectural pattern known
as "client callback". This is where a client program creates a remote reference for a callback
interface in its own process, and then passes that remote reference to a different remote server
object running on a different machine to register to receive callback notifications from the
server to the client process.

One of the biggest challenges when using any form of client callback system occurs in a
situation where the client and server machines are separated by complex network topology.
This is especially true where a client-side firewall exists between the client and server, which
is the situation in almost all large corporations nowadays.

Any time a remote reference passes through a firewall or network bridge I router, it is quite
likely that it will become invalidated due to network address translation or TCP port access
security policies built into the firewall. For example a remote reference that contains an
endpoint IP address of 192.168.0.2 will not work beyond the local network at all because this
address is in the "non-routable" address range. Similarly very few firewalls in large
organizations are configured to allow any incoming traffic into the corporate network at all
(even on well-known ports such as 80), and all incoming calls are generally routed to
segregated computers in a DMZ (Demilitarized Zone) where they can be closely monitored
and controlled. Various types of application- or middleware-specific solutions have been tried
in the past to solve this problem, but generally without much widespread success. The only
generally accepted way around the firewall problem is to use a form of client-pull-based
notification system, which ultimately boils down to the client polling for updates with a usual
request-response style interaction that can easily pass through firewalls.

Remote References and Web Services
Having examined the general concept of remote references, and how they have been handled
to date in existing distributed communications technology, it is now time to turn our focus on
to the emerging area of XML Web Services technology, and look at how remote references fit
into the new picture.

Applying Remote Reference Principles to Web Services
The concept of remote references can be mapped fairly cleanly into Web Service technology.
The data required to represent a remote reference can be encoded into an XML format using
the approach of a composite data type with the appropriate fields. A schema definition can be
created for this representation, so that a remote object reference can be serialized into a
recognizable form on the wire. When the remote reference data arrives on the client, the data
can be stored in an appropriate internal storage object created by the middleware library
ready for a suitable interface to be applied to make it usable to the client program.

326

www.manaraa.com

Remote References and XML Web Services

There is the obvious question of who creates and controls the schema definition for the
remote references, and the possibility that multiple competing formats may exist, up to one
per possible implementation language that exists in the works. All of these are concerns for
Web Services infrastructure vendors, but are likely to be resolved over time as the technology
matures. The XML Protocol working group at W3C (http://www.w3.org/2000/xp/Group/) is
looking at the related areas of the Asynchronous Messaging and Event Notification usage
patterns, although they are not yet looking at the standardization of remote references
specifically at the moment.

Remote Object Factory
The situation of a Web Service that acts as a "factory" for another service instance is much
harder to deal with using general purpose Web Service software. This factory service will
attempt to return the remote reference data for the client to construct a client-side proxy for
the second service, and then use that newly constructed proxy for further communications.
This requires a language capable of dynamically creating local proxy instances and the
necessary SOAP libraries for the client-side programming language that can recognize this
data as the representation for a remote reference and act accordingly. Finally, there needs to
be a suitable pre-existing interface to provide a wrapper for the local proxy and make it
usable in a strongly typed language such as java.

The easiest way around this is to create a "composite service" that executes on the server but
encapsulates the factory-based usage that would have to be done on the client side when
remote references are being used. This has several advantages - it keeps the controlling logic
on the server where it arguably should be for maximum scalability, it minimizes network
communications traffic, and keeps all technology-specific constructs in the same technology
domain.

Client Callback
All the previous discussion of the problem of factory objects applies equally to the client
callback situation, just obviously in the reverse direction of course. As a simple example,
how would a Visual Basic client program create a suitable remote reference to pass to ajava
Web Service? Even though a VB.NET program may be able to create a callback reference
compatible with .NET Remoting without too much trouble, it is not likely to be in the form
that is directly usable with a java Web Service. If the client and server use different
middleware, a user may well have to implement a SOAP listener to receive request
messages for the exported remote reference interface required by the server in order to be
able to receive client callbacks, rather than this being handled automatically by the
middleware libraries.

In addition, all the problems with client-side firewalls and network topology that were present
in the non-Web Service situation are also present here. This will typically prevent the server
talking directly back to the client, even through a well-known port such as HTTP port 80.

327

www.manaraa.com

Jorgen Thelin

The WSDL specification has constructs for describing such client callbacks in a standard
manner (the "Solicit-response" or "Notification" transmission types in a PortType definition),
but this does not particularly help solve any of the above problems. Although WSDL allows
the message formats and interaction style to be specified, there is currently no way to specify
the additional configuration information needed to make this actually work in practice. As an
example, there is no standardized way to specify a "client endpoint address" (such as a
hostname and port number where a HTTP server will be listening for SOAP messages in the
client program). Some form of "register" operation would need to be performed to inform the
server of the client endpoint addressing and routing information before a client callback can
work, and this is currently completely proprietary.

To be able to handle server-to-client communication in a standard manner across any network
topology, Web Services infrastructure vendors need to use a client-pull style notification
system, rather than through the use of remote references.

lnteroperability Considerations
Having looked at how remote references can fit in with Web Services, it is now time to look at
some of the interoperability considerations that face prospective projects in this area.

Language lnteroperability
One of the main problems with the use of remote references, whether Web Service-based or
not, is where different programming languages are being used on the client and server sides.
It can be extremely hard to bridge this technology gap when remote references are
involved, purely through the differences in the execution environment and run-time
framework class libraries.

When Web Services are involved though, this is especially problematic as one of the main
purposes of using XML-based Web Service communications is precisely to enable the easy
communicating between different technologies.

Web Service lnteroperability
The question of which schema definition is used for the remote reference data on the wire is
an immediate problem, as there are currently at least three different formats in widespread use
including Microsoft (.NET Remoting), Systinet (WASP), and the Indiana University
SoapTeam group (XSOAP/SoapRMI).

In theory it would be possible for Web Service tools and SOAP libraries to recognize and
support several different formats, but in practice this tends not to happen for various
commercial and philosophical reasons. Because of this, deploying Web Services that use
remote references almost always restricts use of that service to clients using exactly the same
SOAP libraries as were used on the server.

328

www.manaraa.com

Remote References and XML Web Services

Given that one of the fundamental purposes of using Web Services is to maximize
interoperability, there are very few situations where this implementation choice could be
viewed as anything other than highly limiting. There are only a few companies or
organizations that have the dominant position to be able to dictate communications
infrastructure to their suppliers and customers, and after all this is precisely the sort of tight
coupling that Web Services technology is trying to avoid. It is not enough to agree to use the
same schema definitions, because remote references require additional semantic interpretation
of the remote reference data construct in the schema to create the local proxies for the remote
reference to be usable. There is a big difference between just SOAP interoperability (where
SOAP is just the transport medium) and true Web Services interoperability.

WSDL lnteroperability
In general, the use of remote references does not create any interoperability problems at the
WSDL level. All remote reference formats have type definitions based on the XML Schema
standard, which can be read by tools from all the different vendors. The appropriate remote
reference schema definition will be imported into the WSDL file for the Web Service, and can
be syntactically decoded correctly by any Web Service development tools or run-time
libraries. The only problem then becomes that additional semantic interpretation of that
remote reference schema definition has to occur, and there is currently no way of specifying
this fact in a WSDL definition.

Minimizing Problems with Remote References
By far the easiest way to minimize problems with remote references is simply not to use them
at all! There are very few scenarios, if any, where what we are trying to achieve by using
remote references cannot be achieved by other more "service-oriented" mechanisms.

For the situation of exposing as a Web Service an existing system that already uses remote
references extensively as factory objects (which is a very common approach in mature
CORBA systems), it is usually easier to create a simple "fac;ade application" that mirrors the
interface of the underlying service, but uses opaque handle values or tokens to ensure all
reference objects remain in the same technology domain. Thus we avoid the problem of
programming language semantic mismatch or technology translation gaps. This task can be
done transparently by suitable infrastructure tools, so is not as big a challenge as it may at first
appear. This is also an approach widely used for creating stateless fac;ades to handle the
mapping of stateful service instances, to keep the control in the right place (on the server, not
on the client), and is where lessons from designing stateless DCOM systems are particularly
relevant. This "re-purposing" of interfaces is an entirely desirable state of affairs, as one of the
main reasons for using Web Services is to maintain low dependency and high interoperability
between applications through the use of loosely coupled interfaces and loosely coupled
interactions. A more detailed examination of this topic is beyond the scope of this paper.

329

www.manaraa.com

Jorgen Thelin

Where the decision is taken that remote references are going to be used by a Web Service,
then it is better to restrict that service to internal use inside the corporate firewall. It will be
extremely hard unless you are a large company (Ford- or General Electric-sized, say) to get all
your trading partners to change to using the same SOAP library as you have chosen just so
they can use that one particular Web Service from your company, but it is considerably easier
to adopt an in-house technology standard. By definition, remote references create a much
tighter coupling between the client and server because of the additional semantic
interpretation of the returned data to make remote references work - certain parts of the
return data need to be extracted from the message and translated into a local proxy for the
remote object reference.

Finally remember that, as soon as remote references are used in an application, the problems
of "distributed garbage collection" need to be borne in mind so as not to restrict server
scalability. When the server has full control of remote object lifecycles, it can take steps to
intelligently optimize the number of object instances in existence at any point in time to
match the current demand from clients.

Without distributed garbage collection features built into the distributed object technology,
the client program has the responsibility to explicitly perform a "disconnect" or "close"
operation so that the server middleware knows it is then safe to clean up and recycle the
object instance and connection in use by that client. Whether through programming errors in
the client program, or network communication problems, it is quite easy for this "disconnect"
notification to not occur in a timely manner, meaning that server resources have to be tied up
for longer than they need be. A distributed garbage collection system can detect when client
programs have disconnected, even if they have not performed the normal "clean"
disconnection. In a heavily used server environment, the difference between running with and
without distributed garbage collection can be highly significant, although not all distributed
object technologies have this facility, and currently SOAP falls into the latter group.

Conclusions
One of the hardest parts of a software architect's job is making decisions about the
implementation technology and approach to use to solve a particular business requirement.
All the new XML Web Services technology is making many fashionable sounding things
possible now that were previously impossible or very hard. It is still the software architects'
responsibility to consider the long-term implications of the decisions they make at the early
stages of the technology adoption cycle, and there are a number of problem areas that need
very careful decisions.

This paper has explored some of the mismatch between the service-oriented middleware
approach of Web Services and the object-oriented middleware approach required to support a
remote reference architecture. We have looked in detail at the effect of using remote
references in conjunction with XML Web Services technology on application interoperability,
to allow you to make more informed decisions for your organization.

330

www.manaraa.com

Remote References and XML Web Services

331

www.manaraa.com

www.manaraa.com

Index

A Guide to the Index
The index is arranged in word-by-word order (so that New York would appear before Newark1. Unmo~ified
headings represent the principal treatment of a topic and acronyms have been preferred to their expansiOns
as main entries.

A
A2A (Application to Application) integration, EAI, 43
Accenture surveys on business view of ERP, 99
access matrix Internet security model, 292, 302
accounting systems and broker hubs, 92
accounts functionality, 217
accreditation and customer choice, 216
accreditation schemes from Web Services testing

laboratories, 35
adaptation layer

ELPIF, 105
UPS, 109

advantages of Web Services
to business organizations, 26
to customers, 27
to developers, 26, 28

AES (Advanced Encryption Standard), 295, 301
aggregation, Web Services, 161

Web Services Intermediaries and, 204
agreements see CPA; process agreements, 828; TPA.
agreements layer, generic Web Services stack, 162
alerts and Value Added Service Suppliers, 208
Alphaworks program, 34
Apache Software Foundation

Apache AXIS project, 34, 154, 206
Apache SOAP project, 34, 154, 206, 258
Apache server security and Web Services, 300

API (Application Programming Interface)
differences between Web Services and, 52
superiority of Web Services for synchronous
integration, 188

AppleScript and Apple support for Web Services, 34
application frameworks, 273

see also J2EE; .NET Framework (under N).
J2EE and .NET compared, 280

factors affecting choice, 283
J2EE and .NET introduced, 274
services provided, 273
Web Services and, 278

application integration
see also EAI.
ROI calculations of benefits, 17
Web Services not the fastest method, 82

application oriented integration, B2Bi, 61
application servers see servers.

application-centric Web Services, 278
Appraisal Web Services

real estate case study, 154
architectures

see a/so SOA; Web Services stacks.
Web Services Intermediaries, 205
eMarketplaces, 125

UDDI taxonomical architecture, 133
integration brokers, 72

open architecture requirement, 75
Web Services, 161, 237

BEA Systems, 253
Borland, 254
Hewlett-Packard, 253
Microsoft Corporation, 245
Oracle, 249
Sun Microsystems, 247

.asmx file extension
prospects for open source implementations, 268
Web Services under ASP.NET, 262, 266

ASP (Application Service Providers)
business model, 29 .
Web Services industry may resemble, 212

ASP.NET Web Services orientation, 34
asynchronous integration and Web Services benefits, 189
audit mechanism

B2Bi solutions require audit trail feature, 59
BPSS support for audit trails, 164
business process standards require audit trail feature, 160
integration brokers support for audit trails, 77, 79
no BPML support for, 170
no WSFL support for, 168
no XLANG support for, 166
operating system areas suitable for monitoring, 312
requirement for EAI Web Services, 49
Web Services Auditors, 216, 217
Web Services Intermediaries and, 203

authentication, 306
see also security aspects of Web Services.
second-level authentication, 307
single sign-on authentication, 112
Tivoli Policy Director, 107
Web Services Intermediaries and, 203

automated control of business process
STP and, 183

autonomy of business partners
B2Bi integration patterns, 61, 63

www.manaraa.com

B2B (Business to Business) systems

B
B2B (Business to Business) systems

addressed by ebXML BPSS, 162
integration brokers support, 75, 76
possible specification addressing EAI and, 170
process agreements and business process

standards, 160
real estate industry, 143
Web Services and essential features of B2B, 64
working system using ELPIF, 111

B2Bi (Business to Business integration), 57
c-commerce enabled by, 18
complexity, 59
cost reduction from using UDDI/WSDL, 134
distinct Web Services domain from EAI, 78
essential features of B2Bi solutions, 59
external STP and, 179
integration broker and Web Services example, 80
integration patterns, 60

choosing, 62
public business process, 159
quality of external Web Services, 20
real-time integration, 62
STP and Web Services example, 194
vendors and products, 60
Web Services and, 64

future role of Web Services intermediaries, 68
procurement application example, 65
procurement example using Web Services Networks, 67
security deficiencies of Web Services, 65
Web Service Networks, 66

Web Services will evolve from EAI to, 52
XML role, 63

B2C (Business to Consumer) communication
current eMarketplaces and, 118

backup tools, 317
Balmer, Steve

on .NET Web Services, 279
bandwidth requirements and ROI calculations, 15
banking account information and Web Services, 27
batch transfer method, EAI, 42
BEA Systems

see also Weblogic server.
elink integration broker, 60, 71
Web Services architectures, 253

benefits
see a/so advantages.
cost benefits of web Services, 13

BFM (Business Flow Manager) B2B system, 111
Bhascaran, Kumar

working B2B system using ELPIF, 111
Big Bang ERP implementations, 89
Bind Systems quoted on ebXML, 228
binding information, caching, 48, 194, 287
binding options, WSDL

SOAP only currently available, 130
binding templates, WSDL interfaces at UDDI, 123
binding, Web Services, 263

JAX-RPC and, 265
SOA operation, 45
WSDL and, 259

Biz Talk Server, 4
B2Bi solution, 60
BizTalk Server 2000 and XLANG, 239

334

BizTalk Server 2002 Web Services enabled, 279
block-structured control flow modeling and, 171
integration broker, 71
Web Services workflow level language, 293

Bluestone software, Hewlett-Packard, 253
BOB (Best-of-Breed) approach

enabled by integration brokers, 72
Borland

support for Linux and Delphi 6 Web Services, 34
Web Services architectures, 254

Bowstreet Web Services providers, 298
boxes within boxes, WSDL, 129
BPM (Business Process Management)

benefits of using Web Services for STP, 187
part of STP, 180
regarded as an application framework component, 273
ROI calculations of benefits, 17

BPMI (Business Process Management Initiative)
implementation of generic Web Services stack, 161
relationship with ebXML, 168

BPML (Business Process Markup Language)
business process standards and, 168
Web Services for STP, 187

BPSS (Business Process Specification Schema),
ebXML, 162

broker hubs, 92
brokerages, 35

offering help in choosing Web Services, 28
Try and Buy Web Services, 27
Web Services charging using, 32
Web Services creation and, 214
Web Services development processes and, 212
Web Services promotion and, 216
Web Services publication and, 215
Web Services selling and, 217

browser-based interfaces and refacing, 43
BTP (Business Transaction Protocol), 254
bug fixe advantages of Web Services, 28
business benefits of Web Services and ROJ, 18
business drivers favoring ERP, 86
business issues, WebServices.org, 241
business models of ASPs, 29
business partners

see a/so interoperability.
agreements, B2Bi, 63
audit trails for transactions between, 160
autonomy, under B2Bi integration patterns, 61, 63
business process integration and, 158
ebXML implementation and, 226
electronically enforcible agreements with Web

Services, 228
management and personalization

integration brokers required to support, 77
ROI calculations and business collaboration, 18

business perspective on Web Services, 2
business portals as refacing solutions, 43
business process efficiency and STP, 182
business process integration, EAI, 44

effect of Web Services, 51
business process level see workflow leveL
business process manager, e-logistics integration, 104
business process orchestration and W3C Web Services

Workshop, 244
business process oriented integration, B2Bi, 62
Business Process Schema, ebXML, 234

www.manaraa.com

business process standards, 157
business process categories, 159
consequences of their absence, 158
convergence, 170
OMG's EDOC standard, 171
required features of, 159
standardization as critical STP parameters, 182

business process transparency and STP, 183
business processes

STP matching utility example, 191
Web Services ROI and, 13

business processes and scenarios, ebXML Repository, 224
business view of ERP investment, 99

c
c-commerce (collaborative conmmerce}, 18
cache intermediaries, 204
caissedesdepots.fr, 4
Cajun see Weblogic server.
Cape Clear CapeConnect product, 154
car showrooms account package illustration, 29
Care Data Systems

quoted on ebXML, 229
case studies

e-logistics example, 107
real estate industry use of Web Services, 150

cataloging and description level, Web Services, 293
CDC (Caisse des Dep6ts et Consignations}, 4
CEFACT (UN Center for Trade Facilitation and Electronic

Business}, 221, 224
centralized service repository, 53
centralizing functionality, 5
certificate security, 313
charging for Web Services, 30

charging mechanisms, 32
charging schemes tabulated, 33

choreography layer
see also workflow.
generic Web Services stack, 162

CIDX (Chemical Industry Data Exchange}, 64
classification of Web Services, 277
client callback

use of remote references, 326
Web Services and, 327

client-pull notifications, 326, 328
closed STP, 180
CLR (Common Language Runtime}, 262
clustered servers

hub-and-spoke integration brokers and, 72
integration broker scalability, 77

collaboration-based process models
BPML support for, 169
BPSS support for, 163
business process standards required feature, 159
WSFL support for, 167
XLANG support for, 165

collaborative processes
enabled by B2Bi, 78
ROI calculations and business collaboration, 18

Collaxa Web Services Orchestration Server, 154
COM+ (Component Object Model} and integration brokers, 75
CommerceBroker integration broker, 71
Common Alliance Interface, ELPIF, 104

RFQ Web Service method, 106

data oriented integration

Common Business Protocols, WSDL, 136
advantages, 137, 138

communication protocols
B2Bi solutions must support diverse sets, 59
financial industry, ISO 15022 and, 186
integration brokers required to support, 76

community portals, real estate services, 145, 146
differentiation with Web Services, 147
Web Services case study, 150

competition and .NET Web services, 282
competitive advantage

B2Bi and, 57
eMarketplaces, 117

component architecture security aspects, 300
computer hardware industry UDDI fingerprint, 136
Computer Security Institute, 308
Computer Security Resource Center, 308
consumer Web Services, 27
content management and e-commerce, 118
control flow modeling

block-structured, XLANG use, 165
business process standards, 171

convergence
business process standards, 170
EAI and Web Services, 50
EAI Web Services and integration brokers, 51

CORBA (Common Object Request Broker Architecture}
distributed object technology example, 320
integration broker support required, 75
technology using remote references, 322

cost benefits of Web Services, 13
Cost of Ownership calculation, 285

see also TCO.
cost of Web Services implementation, 3, 315

factors in ROI calculatios, 14
costs reductions achievable with Web Services, 4

incremental nature, 12
CPA (Collaborative Partner Agreement}, ebXML, 226

BPSS and, 164
ebXML using Web Services, 235

CPP (Collaborative Protocol Profile}, ebXML, 225
CPA and, 226
ebXML implementation with Web Services, 234

creation of Web Services and brokerages, 214
credit-reporting, real estate case study, 152
cross-platform capabilities

see also interoperability.
Borland Web Services, 255

CrossWorlds Software integration broker, 60, 71
hub-and-spoke architecture, 73

cryptography see encryption; PKI.
custom security, 314
customer services

improvements, and ROI calculations, 19
STP with Web Services benefits, 190

customer subscriptions financing VASS, 211
customization of ERP packages, 91
cXML (commerce XML}, 80

D
data integrity rersearch on UDDI, 218
data oriented integration

B2Bi, 61
EAI, 42

business process integration and, 44
effect of Web Services, 50

335

www.manaraa.com

data replication method

data replication method
EAI data oriented integration, 42

data union method
EAI data oriented integration, 42

databases, UDDI registries as, 122
DCOM (Distributed COM)

distributed object technology example, 320
technology using remote references, 323

DDoS (Distributed Denial of Service) attacks, 301
definition of Web Services, 237, 25 7
Delete Binding UDDI publishing API call, 136
Delete Business UDDI publishing API call, 135
Delete Service UDDI publishing API call, 135
Delete Technical Model UDDI publishing API call, 136
Delphi 6, 34

Borland Web Services and, 255
Denial of Service attacks, 310
deployment infrastructure, 312
derivatives trading, 176
description stack, W3C Web Services Workshop, 244
design patterns, EJB, 325
development companies, Web Services, 34
differentiation of commercial from free Web Services, 217
011 (Dynamic Invocation Interface), CORBA, 325
DIME (Direct Internet Message Encapsulation), 245
directory services integration broker support, 77
disadvantages of Web Services

to customers, 28
to developers, 28
performance disadvantages, 82

disaster recovery, 208, 316
DISCO, Microsoft, 264
discount rate, 10
discounted cash flow analysis, 10, 11
discovery with J2EE and .NET, 263
discovery stack, W3C Web Services Workshop, 244
distributed garbage collection problem, 330
distributed object technology, 320
distributed transaction management, B2B, 64
distribution channels, Web Services advantages as, 4
distributor role in Web Services creation, 215
OMS (Delegated Management Services), Netegrity, 298
DMZ (Demilitarized Zone), 310
domain-based security, 294
dotcom failures

free Web Services and, 31
Web Services charging mechanisms and, 32

dynamic business intregration B2B feature, 65
dynamic business relationships and ROI calculations, 18
dynamic data binding, ELPIF, 105
Dynamic e.!Jusiness, IBM, 91

E
a-business see electronic business; ebXML.
a-commerce

336

common requirements of, 118
eMarketplaces as a subset of, 118
expected value and productivity gains, 58
industry-wide standards needed, 64
interoperability requirement, 119
models reviewed, 119
SCM as special case of, 119
security aspects of Web Services, 292
servers, a-logistics and, 103
UPS on-line a-commerce site, 101

a-logistics processes integration, 103
see also ELPIF.
example using UPS On·line XML Tools, 107

XML templates, 109
interaction diagram, 103

EAI (Enterprise Application Integration)
alternative to Web Services in the real estate industry,

146,147
business process integration solution, 44

effect of Web Services, 51
complexity of IT environment, 40
convergence with Web Services, 50
data oriented integration solution, 42

effect of Web Services, 50
defined, 41
distinct Web Services domain from B2Bi, 78
essential features of a Web Services framework, 49
example using Web Services, 48
function or method integration solution, 43

effect of Web Services, 51
IBM WebSphere Process Manager and, 239
integration broker and Web Services example, 80
internal STP and, 178
possible specification addressing B2B and, 170
private business process, 159
ROI from using Web Services, 53
STP and Web Services example, 194
user interface integration solution, 43
Web Services as enabling technology for, 46

compared to traditional EAI, 47
Web Services compared with, 90
Web Services suitability, 46
Web Services will evolve from, to B2Bi, 52

ebXML, 221
advantages as a global standard, 223
BPSS specification, 162
discovery and negotiation phases, 226
implementation of generic Web Services stack, 161
implementation phase, 224

relationship with Web Services, 232
industry support, 227

quotes from vendors supporting, 228
Product Shipment Status example and, 80
relationship with BPMI, 168
security specifications, 294
Technical Architecture Specification, 232
transaction phase, 227
Web Services publishing and discovery, 259
Web Services relationship with, 232
Web Services role in accelerating, 229

ebXML Messaging Sevice
BPSS and, 164
Sun ONE architecture recommendation, 248

ebXML Registry Specification 1.0, 263
EDI (Electronic Data Interchange) and XML, 15

compared to ebXML as a standard, 223
XML.!Jased, for B2B, 122

EDOC (Extended Distributed Object Computing), OMG, 171
EJB (Enterprise JavaBeans), 239, 261

BEA System Web Services and, 253
EJB objects as examples of remote factory objects, 325
M&based portfolio management example, 288
technology using remote references, 323

electronic business
absence of a Web Services business model, 30
Dynamic e-business, IBM, 91
requirements of a global standard, 223
standardization with ebXML, 221

www.manaraa.com

ELPIF (E-Logistics Processes Integration Framework), 101
backend architecture diagram, 105
components and services, 104
high-level view, 103
Web Services provided to Shipping Service Providers, 106

eMarketplaces, 117
architecture of UDDI/WSDL-based, 125
assessment of likely benefits, 139
product classification, 133
requirements, 139
SOAP role in UDDI-based, 132
UDDI role in, 124
user friendly interfaces, 132
WSDL role in, 124

emergencies see disaster recovery.
encryption

Web Service security and, 301, 314
XML, 295

endpoints, WSDL, 259
WSEL and, 242

ERP (Enterprise Resource Planning), 85
business view of, 99
customizing packages, 91
history and evolution, 87
implementation methodology, 88
key business drivers for, 86
Product Shipment Status example, 80
vendors' encroachment into adjacent markets, 98
Web Services based

advantages, 89, 91
architecture, 94
beneficiaries, 97
compared to current, 96
current use, 92
economics, 98

E-Speak toolsets, HP, 91, 253
ETL (Extract, Transform and Load) method, EAI, 42
exception handling

BPML support for, 169
BPSS support for, 163
business process standards required feature, 160
WSFL support for, 168
XLANG support for, 166

execution automation
BPML support for, 170
BPSS support for, 164
business process standards and, 160
WSFL support for, 168
XLANG support for, 166

external STP, 179
Extricity integration broker, 60, 71

F
fa~ade applications and remote references, 329
Fax On Demand, 27
Federal Express in-house Web tools, 101
financial imperatives and Web Services, 4
financial instrument processing and STP, 176
fingerprints, UDDI, 136

publishing at a UDDI Registry, 137
SCM based on, 138

firewalls, 292
business process integration across, 158
client callbacks and, 326, 327
configuration, 310
DDoS attacks and, 301

IBM Web Services

security software and, 309
FIX (Financial Information Exchange protocol), 185
Flamenco Networks, 206
Forrester Research definition of Web Services, 237
FpML (Financial products Markup Language), 184, 185
franschising ERP implementations, 89
free Web Services

dotcom failures and, 31
trial periods and, 33
undermining commercial prospects, 217

freight-forwarding eMarketplace example, 128
F-Secure virus protection, 309
function level integration, 47

current Web Services limited to, 65
function or method oriented integration, EAI, 43

effect of Web Services, 51

G
Gartner definition of Web Services, 237
Get Authentication Token UDDI publishing API call, 135
getQuotation procedure, WSDL, 128
global cache security, 314
Grand Central security product, 32, 206, 299
GSCC (Government Securities Clearing Corporation), 179
GUI (Graphical User Interfaces)

UDDI-based eMarketplaces, 123
GXA (Global XML Web Services Architecture), 245

H
HailStorm see .NET MyServices (under N).
hardware requirements and ROI calculations, 14
Hewitt Associates, 92
Hewlett-Packard

security aspects, 297
Web Services architectures, 253

Home Inspection service, real estate case study, 154
hosted-application model, ERP architecture 96

cost reduction through, 91 '
hosting companies, Web Services, 35
house purchase process, real estate case study, 150
hub-and-spoke architecture, 72
human intervention, using Web Services for STP, 187
human readable text in SOAP messages, 121
human resources and ERP, 92
hybrid ERP models, 99

i2 solutions, ERP, 86
IBM MQ Series Integrator, 60, 71, 242
IBM Web Services

acceptability of architecture, 238, 255
implementation of generic Web Services stack, 161
J2EE Enabled Web Server, 280
security aspects, 296, 300
state transition control flow modeling and, 171
support for Web Services, 34
support for Web Services creation, 154
Web Services stack, 242
WebSphere Business Integrator, 243
WebSphere Process Manager, 239
WebSphere Studio Technology Preview, 243

337

www.manaraa.com

IBM Web Services Toolkit

IBM Web Services Toolkit, 243, 258
ICE (Information and Content Exchange) protocol, 250
IDC Digital Planet 2000 Report, 90
identity security, 306
IIOP (Internet Inter-ORB Protocol), 242
liS (Internet Information Services) security deficiencies,

298,300
IM (Interaction Manager) B2B system, 111
incremental cost reductions and Web Services, 12
Indiana University SOAP Team, 328
industry groups supporting ebXML, 227
industry roles, 34
industry support see vendors.
Information Integration/Exchange architecture, 94
inquiry/search interface, UDDI, 123, 126
inspection of Web Services Intermediaries, 206
integration brokers, 71

business process integration and, 44
converting applications into Web Services, 78
essential services provided by, 75
example solution and vendors, 71

supporting Web Services, 81
physical architectures, 72
ROI calculations on software and, 15
Web Services in relation to, 78

connectivity with third-party Web Services, 79
Product Shipment Status example, 80

Web Services support, 51
integration patterns, B2Bi, 60

factors involved in choice, 62
Web Services and, 65

integration problems
advantages of using ERP with Web Services, 89
benefits of Web Services, 2

benefits for STP, 187
business process standards and, 158
cost reduction using Web Services, 4

interest rates and IRR calculations, 11
interface distribution problem, 325
interface encapsulation, 47, 65
interface repurposing, 329
interfaces, UDDI, 123

Common Business Protocols, 136
eMarketplace using, 125
registry interface, 125

intermediaries see Web Services Intermediaries.
internal projects, introducing Web Services as, 52, 82, 197
internal STP, 178
International Data Corporation a-commerce estimates, 58
Internet

deficiencies and Web Services, 231
security models and Web Services, 292
usage by Web Services, advantages over current MBCSS

system, 195
interoperability

ebXML and, 222

338

a-commerce requirement, 119
integration broker required feature, 75
.NET and legacy systems, 269
remote references and, 328
SOAP and, in eMarketplaces, 132
testing for, 214
Web Services advantage for EAI, 46
Web Services and, 232

not restricted to SOAP interoperability, 329

introspection, 270
Intuit QuickBooks and broker hubs, 92
inventory optimization, 120
IP (Internet Protocol) based environments, 197
iPianet server, Sun Microsystems

security aspects, 296, 300
Sun support for Web Services, 34
Web Services enabled J2EE server, 280

IRR (Internal Rate of Return), 11
ISO 15022 and - XML, 186

15022.org, 187
implementation and migration, 186
standards supported by SOA-based frameworks, 184

J
J2EE (Java 2 platform, Enterprise Edition)

see also application frameworks.
APis of J2EE 1.3, 276
application framework, 279

introduced, 276
comparison with .NET, 257, 280

absence of competition among .NET vendors, 283
factors affecting choice, 267, 283
maturity and robustness advantages of J2EE, 283

integration broker support required, 75
J2EE middleware in M$-based portfolio management

example, 287
support for Web Services, 280

diagram of elements, 276
Web Service invocation and execution, 265
Web Services description, 260
Web Services implementation, 261
Web Services publishing, discovery and binding, 263
Web Services, programming model, 266

Java security, 296
Java WSDP, 280
JAXB (Java API for XML Binding), 266

Sun Web Services architecture component, 248
JAXM (Java API for XML Messaging), 261, 266

Sun Web Services architecture component, 248
WSDP component, 280

JAXP (Java API for XML Processing), 261
Sun Web Services architecture component, 248
WSDP component, 280

JAXR (Java API for XML Registries), 263, 266
Sun Web Services architecture component, 248
WSDP component, 280

JAX-RPC (Java API for XML-based RPC), 261, 265
Sun Web Services architecture component, 248
WSDP component, 280

JCA (Java Connector Architecture), 189, 253, 279
JMS (Java Message Service), 189, 279
JSSE (Java Secure Socket Extension), 280
justifYing investment

NRV and IRR calculations, 11

K
Kewill Systems shipping automation, 102
Kylix 2 and Borland Web Services, 255

www.manaraa.com

L
language interoperability, 328
large companies

complexity of IT environment, 39
message bus integration brokers suit, 7 4

latency, 28
business process oriented integration and, 62

layers of security, 310
legacy applications, 104, 105, 106

EAI and, 40
Liberty Alliance, 34
limitations of Web Services, 3
Linux, 34
litigation

cost of international litigation and trust, 215
Lloyds TSB Commercial Finance, 4
locating services

possible role of searching tools and VAS, 216
SOA operation, 45

location transparency, 320, 322
logging and Web Services Intermediaries, 203
login security, 307
logistic see e-logistics.
loosely-coupled applications, 99, 157, 254

remote references opposed to, 329
UDDI-based eMarketplaces, 132

M
Mac OS X, 34
MacAfee virus protection, 309
management services and Web Services

Intermediaries, 204
marketing, 28
matching utility example

STP example using Web Services, 190
use of Web Services, 192

MBSCC (Mortgage-Backed Securities Clearing
Corporation), 190

MDA (Model Driven Architecture), OMG, 171
Mercator CommerceBroker, 60
Mercator Enterprise Broker, 4, 60, 71

support for Web Services, 81
Mercator WebBroker, 60
mergers and acquistions and need for EAI, 40
message brokers see integration brokers.
message bus architecture, integration brokers, 73
message security and reliability

BPSS support for, 164
business process standards required feature, 160
no BPML support for, 170
no WSFL support for, 168
no XLANG support for, 166

message-style Web Services, BEA Systems, 254
messaging layer

generic Web Services stack, 161
WebServices.org, 240

messaging middleware and integration brokers, 71
Messaging Service, ebXML, 228, 235
Meta Group surveys

economics of using ERP with Web Services, 98
integration cost benchmarking figures, 89

NetAction, Hewlett-Packard

metadata repositories, integration brokers, 77
MicroSoft BCentral and SOA, 94
Microsoft Corporation

see also DISCO; liS; MSDN; MSIL; MTS; .NET (under N);
SOAP toolkit; Windows; XLANG.

commitment to Web Services, 34, 269
implementation of generic Web Services stack, 161
specific security information, 308
Web Services architecture, 245

Microsoft Passport authentication, 203, 314
middleware

see also CORBA; EJB.
J2EE-based, in MS-based portfolio management

example, 287
messaging middleware and integration brokers, 71
service-oriented and object-oriented, 319
solutions available for EAI, 41
STP with Web Services offer more flexibility, 190
streamlining, ROI calculations and, 16
technologies using remote references, 322

MLS (Multiple Listing Service), 144
monitoring networks and integration brokers, 79
monitoring tools and ROI calculations, 15
mortgage application, real estate case study, 151
MRP (Materials Requirements Planning), 88
MSDN (Microsoft Developer Network), 324
MSIL (Microsoft Intermediate Language), 262
MTS (Microsoft Transaction Server), 323
multi-hub architecture, integration brokers, 7 4
myServices.ONE, 249

N
National Institute of Standards and Technology, 308
Navision and broker hubs, 92
NEON eBusiness Integration Servers, 71

B2Bi solution, 60
support for Web Services, 81

.NET Framework
see also application frameworks.
application framework components, 275
availability on non-Microsoft operating systems, 255
comparison with J2EE, 257, 280

absence of competition among vendors, 282
cost advantage of .NET, 281
factors affecting choice, 267, 283
personalization support, 285
role-based security advantage, 285
Visual Studio .NET superiority, 282

growth potential and adoption of Web Services, 32
Microsoft Web Services architecture and, 246
security aspects, 296
support for Web Services, 279
support for Web Services creation, 154
Web Services description, 260
Web Services implementation, 262
Web Services invocation and execution, 266
Web Services publishing, discovery and binding, 264

.NET MyServices, 245, 279, 285, 298
initial service set, 247

.NET Remoting
interoperability and, 328
replaces DCOM, 324
technology using remote references, 324

NetAction, Hewlett-Packard, 253

339

www.manaraa.com

Netegrity

Netegrity
Traction Minder and OMS security products, 298
use by framework providers, 297

network bandwidth requirements and ROI calculations, 15
network router devices, 311
network security see security aspects.
newsletters from VASS, 210
next generation Web Services, 4 7, 65
non-blocking RPC invocation, JAX-RPC, 265
non-repudiation see audit mechanism; transaction

management.
NPV (Net Present Value), 10

0
OASIS (Organization for the Advancement of Structural

Information Standards), 139
see a/so XACML; XLANG.
ebXML sponsor, 221, 224
e-commerce standards and, 64

object references see remote references.
object-orientation and Visual Basic .NET, 268
object-oriented middleware, 319
object-oriented programming

distributed object technology and, 320
Oblix

NetPoint security product, 299
use by framework providers, 297

offsite backups, 316
OMG (Object Management Group), 171

see also CORBA.
Omgeo industry-matching utility, 179
ONE (Open Network Environment), Sun, 91

security aspects, 296
Web Services architecture, 247

one-way RPC, JAX-RPC mode, 265
online procurement portals, e-commerce model, 119
open standards see standardization.
open STP, 181
operating system security, 292, 301
operational costs and ROI calculations, 16
Oracle

customer profile, 97
E-Business Suite uses broker hubs, 92
FastForward program, 97
Oracle11i use of Web Services, 93
Oracle9i Web Services Framework, 249

diagram, 250, 252
requirements tabulated, 249

Service Oriented Architecture, 93
vendor supporting Web Services, 34

orchestration layer
see also workflow.
candidate business process specifications, 162
financial industry standards addressing, 185
generic Web Services stack, 162

OTC (Over The Counter) derivatives and FpML, 185
outsourcing functionality, 5

p
packaging/transport layer

generic Web Services stack, 161
password requirements for identity security, 307
patrolling software, 309

340

payback period analysis, 10, 11
pay-to-use see charging for Web Services.
Peachtree Complete Accounting, 92
PeopleSoft

customer profile, 97
ERP and Web Services from, 93
Service Oriented Architecture, 94

performance disadvantages of Web Services, 82
perfonnance improvement and Web Services

Intermediaries, 204
personalization support, 285
phased implementation of Web Services, 22

starting with internal projects, 52, 82, 197
physical security, 306
pilot projects for risk management, 19
PIPs (Partner Interface Processes), RosettaNet, 80, 91
pitfalls see threats.
PKC (Public Key Cryptography), 313
PKI (Public Key Infrastructure) encryption, 295
planning

Web Services introduction, maintenance and
upgrades, 315

Platform for Privacy Preferences, 302
PO (Purchase Orders) processing

e-logistics example, 107, 112
portal oriented integration, 82Bi, 60
portfolio management portal example, 286
ports

decisions on routing traffic through firewalls, 310
Praesidium, HP, 297
pre-built Web Services, 279
predetermined Web Services, 208
prepaid charging for Web Services, 33
Primordial WSBANG security product, 299
privacy, 292, 302
private business processes, 159
private STP, 180
process agreements, 828

BPSS support for, 164
business process standards required feature, 160
no BPML support for, 170
WSFL support for, 168
XLANG support for, 166

process defintion layer, WebServices.org, 239
procurement application 82Bi example, 65

using Web Service Networks, 67
Product Shipment Status example

integration brokers and Web Services, 80
programming model for Web Services, 230

J2EE,266
promotion of Web Services and Web Services brokerages, 216
protocols see communication protocols.
public availability, ERP and, 94, 99
public business processes, 159, 162
public STP, 181
publication of Web Services and Web Services brokerages, 215
publishing API, UDDI, 123, 126

API calls listed, 134
publishing operation and SOA participants, 45

Q
QoS (Quality of Service) and Web Services Intermediaries, 204
Quadrasis security product, 299
Quality of Service layer, generic Web Services stack, 162

www.manaraa.com

R
rating Web Services, 209
RBAC (Role Based Access Control)

Internet security model, 292, 302
use by Grand Central, 299
use by Web servers, 300
use by Web Services framework providers, 296

RDBMS (Relational Database Management Systems) and
Web Services security, 301

real estate industry
benefits of Web Services, 146
parties involved, 144
use of Web Services, 143

business drivers, 147
case study, 150
case study imlementation, 154
technical drivers, 147

web sites for end-users, 145
real-time B2Bi, 62
refacing, EAI, 43
registries

see a/so ebXML; UDDI.
Web Services publishing technology, 259

registry interlace, UDDI, 125
Registry Service Interface, ebXML, 234
regulatory requirements and STP implementation, 177
remote factory objects

use of remote references, 325
Web Services as, 327

remote references
definition, 321
distributed garbage collection problem, 330
interoperability considerations, 328
middleware technologies using, 322

CORBA,322
DCOM, 323
EJBs, 323
.NET Remoting, 324
RMI, 322

minimizing problems with, 329
restricting to internal use, 330
typical uses, 324
Web Services and, 326
XML Web Services and, 319

repositories, advantages of centralizing, 53
Repository, ebXML, 224
research on Web Services suppliers, 210
reusability of code and ROI calculations, 17
revenue streams

Web Services industry roles and, 35
Web Services revenue generation, 2, 4

RFQ (Request For Quotes)
e-logistics process, 103
UPS, deployed service information screenshot, 110
Web Service provided by ELPIF, 107
XML templates, 109

risk assessment
quantifying risks as potential expenses, 21
Web Services introduction, 315

risk management and ROI, 19
RMI (Remote Method Invocation), 237

distributed object technology example, 320
technology using remote references, 322

robustness advantage of J2EE, 285
ROI (Return On Investment), 9

diversity of models, 13, 22
example calculation, 10

SCM (Supply Chain Management)

formula for calculating, 9, 284
steps in applying, 20

methodologies introduced, 10
necessity of, for technology projects, 12
risk management and, 19
Web Services and, 12

business benefits, 18
costs and expenses, 14
factors to include, 14
models, tangible and intangible benefits, 13
non-technical factors, 13
technical benefits, 16

Web Services used for EAI, 53
role-based security advantage of .NET, 285
roles in Web Services development, 213
roles, Web Services

security requirements of, 291
Rosetta Net

8PSS precursor, 163
e-commerce standards and, 64
PIPs (Partner Interlace Processes), 80, 91
quoted on ebXML, 228
Web Services workflow level language, 293

routing between specificed Web Services
Intermediaries, 206

RPC (Remote Procedure Calls)
see also JAX-RPC.
DCOM as Microsoft's RPC technology, 323
differences between Web Services and, 52
distributed object technology and, 320
superiority of Web Services for synchronous

integration, 188
use of remote references, 324

RPC-style Web Services, BEA Systems, 254
RTIM (Real-Time Trade Matching), GSCC, 179

use of Web Services, 192
advantages over current implementation, 195

rules component, Web Services Intermediaries, 205

s
SAML (Security Assertion Markup Language). 294, 299
SANS (System Administration, Networking and Security)

Institute, 309
SAP

MySAP uses broker hubs, 92
Service Oriented Architecture, 93
use of UDDI, 93
Web Application Server, 286
Web Services providers, 298

Save Binding UDDI publishing API call, 135
Save Business UDDI publishing API call, 135
Save Service UDDI publishing API call, 135
Save Technical Model UDDI publishing API call, 136
scalability

integration broker open architectures and, 75
integration broker required support, 77
J2EE advantage over .NET, 269, 271, 285
multi-hub integration broker architecture, 74
requirement of B2Bi solutions, 60

schema definitions and interoperability, 328
SCM (Supply Chain Management)

effect of defining UDDI fingerprints, 138
ERP specialization for, 86
ERP vendors' encroachment into, 98
Product Shipment Status example, 80
special case of e-commerce, 119

341

www.manaraa.com

search engine similarities to UDDI

search engine similarities to UDDI, 218
search filter service, VAAS, 209
search tools and Web Services location, 216
search/inquiry GUI , UDDI, 123, 126
second-level authentication, 307
Securant security product, 299
securities transactions and AX, 185
security aspects

B2Bi solutions, 59
Web Services and, 65

EAI Web Services, 49
eMarketplaces, 139
integration brokers, 77, 78
STP, 183

security aspects of Web Services, 291, 305
see also message security and reliability.
additional security software, 309
application networks appear similar, 285
business strategies for, 315
certificate security, 313
custom security, 314
design and implementation errors, 301
domain-based security, 294
global cache security, 314
identity security, 306

supplementary hardware, 308
user ID and passwords, 307

internal and external attacks, 292
J2EE advantage over .NET, 271
Microsoft specific security information, 308
monitoring and auditing, 312
network configuration and security, 310
patches and security guidelines, 308
physical security, 306
risk factor in ROI, 20
security configuration alternatives, 313
security infrastructure components, 309
security products, 298
strategy overview, 305
supporting levels and, 300
UMLand, 302
virus protection, 308
Web Service framework providers and, 296
Web Service levels and, 293

communications level, 295
Web Service providers and, 297
Web Services Intermediaries, 205

security configuration alternatives
platform specificity of, 313

security guidelines, 307, 308
SeeBeyond e*Exchange eBusiness Integration Suite, 60, 71

message bus architecture, 74
support for Web Services, 81

selling Web Services and Web Services brokerages, 217
sell-side eMarketplaces e-commerce model, 119
servers

development tools and
risk associated with Web Services, 20

location of SOAP/WSDL, 128
open source application servers, 268
physical security of server locations, 306
security and Web Services, 300
SOAP compatibility, 128
Web Services enabled J2EE servers, 280
Web Services enabled Microsoft servers, 279
Web Services enabled server vendors, 286
Web Services example, 286

Service Broker SOA component, 45

342

service capabilities configuration and W3C Web Services
Workshop, 244

service consumer applications, Oracle9i Web Services, 252
Service description, Web Services

J2EE and .NET compared, 259
WebService.org, 240

Service implementation, Web Services
J2EE and .NET compared, 261

service interfaces
BPML support for, 169
BPSS support for, 164
business process standards required feature, 160
WSFL support for, 168
XLANG support for, 166

Service invocation and execution, Web Services
J2EE and .NET compared, 264

service layer, generic Web Services stack, 161
Service negotiation layer, WebServices.org, 239
Service Oriented Architecture see SOA.
Service Provider role, Web Services, 230
Service Provider SOA component, 45
Service publishing, discovery and binding, Web Services

J2EE and .NET compared, 263
Service Registry/Brokerage role, Web Services, 230
Service Requestor SOA component, 45
service-oriented middleware, 319
Shipping Process

e-logistics process, 103
Web Service provided by ELPIF, 107

shipping services
deficiencies of existing shipping solutions, 102
generic model, 102
integration architecture diagram, 108

shipToDestination procedure, WSDL, 128
Siebel SOA, 94
silos, 17
single sign-on authentication, 112
SLA (Service Level Agreements)

adminstration by VASS, 210
cost of litigation may outweigh value, 215
need for monitoring tools, 15
possible inadequacy, 215
usefulness, 215

SME (Small and Medium Enterprises)
B2B systems through integration brokers, 75
benefits of ERP plus Web Services, 97
hub-and-spoke integration brokers suit, 73
portal oriented integration for B2Bi and, 60

SMO (SOAP Messaging Object), 262
SNAP families, Borland Web Services, 255
SOA (Service Oriented Architecture), 44

alternatives to remote references, 329
application to STP, 183
offerings from major vendors, 93
goals achievable only with Web Services, 189
three components of, 45

SOAP (Simple Object Access Protocol)
Apple support, 34
built-in .NET SOAP message classes, 267
compliance of available toolkits, 29
eMarkeplaces using UDDI and SOAP messaging, 122
Indiana University SOAP Team, 328
integration broker support, 78
interface with CORBA, J2EE, .NET, 237
interoperability in eMarketplaces, 132
J2EE 1.3 support for SOAP 1.1 protocol, 280
price-lookup requests and, 90
Product Shipment Status example, 80

www.manaraa.com

SOAP (continued)
real estate industry use of Web Services, 148, 149
role in UDDI-based eMarl<etplace, 132
server, binding abstract descriptions, 130
SOAP messages and .NET Web Services, 266, 279
SOAP Security Extensions, 295
toolkit development compnies, 36
version status, 132
W3C Web Services Workshop and, 243
Web Service invocation and execution, 264
Web Service messaging standard, 2, 26
Web Services invoked using, 230, 259

SOAP 2.0 Toolkit, Microsoft, 257, 262, 267
SOAP listeners and client callbacks, 327
SOAP-Routing, 245
software development automation and ROI calculations, 16
software requirements and ROI calculations, 14
software vendors' support for Web Services, 286
SQL Server 2000 Web Services Toolkit, 279
SSL (Secure Sockets Layer), 313
standardization

see also business process standards.
B2Bi solutions and open standards, 60
business process standards as critical STP

parameters, 182
Common Business Protocols, 136
deficiencies of EDI, 223
e-commerce, industry-wide standards needed, 64
ebXML, 221
eMarketplaces based on UDDI and WSDL, 121, 139
ERP vendor's commitment, 95
factors excluded by present Web Services standards, 286
financial industry standards enabling STP, 184
immaturity of

risk associated with Web Services, 20
integration broker support for Web Services standards, 78
open standards benefit of Web Services EAI, 47
open standards benefit of Web Services STP, 184
open standards use for Web Services, 278
progress of adoption, 46
prospects, Web Services architecture stacks, 255
real estate industry use of Web Services, 147
standards based integration and ROI, 16
standards bodies supporting ebXML, 227
Web Services Intermediaries, 206
WSDL, SOAP and UDDI as open standards, 231
XML standards supported by SOA-based

frameworks, 184
XML use for B2B and B2Bi and, 63

Stencil Group, 241
stock quote information, 286
store and forward intermediaries, 204
STP (Straight Through Processing), 175

application of an SOA-based framework to, 183
benefits of using Web Services, 184
BPM and, 180
critical parameters, 181
current technological confusion, 178
defined, 176
drivers and benefits, 177
example of using Web Services, 190

streamlining middleware, 16
subscription charging for Web Services, 33
Sun Microsystems

see also /Planet server; J2EE; Java; ONE.
attitude to Web Services, 270
support for Web Services, 34

Web Services creation, 154

trade information and STP

Web Services architecture, 247
supporting levels, Web Services, 300
SwA (SOAP with Attachments), 237

Sun ONE architecture recommendation, 248
SWIFT (Society for Worldwide Interbank Financial

Telecommunications), 185
advantages of XML over, 196
coexistence with XML, 196
disadvantages of XML compared to, 15, 196
SWIFTML, SWITFNet and ISO 15022, 186

Sybase see NEON.
Symantec virus protection, 309
synchronous communications

application oriented integration, B2Bi, 61, 63
synchronous integration

benefits of using Web Services for, 188
function level integration, 43

synchronous request-response JAX-RPC mode, 265
system level passwords, 307
System.Web.Services namespace, .NET, 262
Systinet, WASP, and interoperability, 328

T
TAM (Trust and Access Manager) B2B system, 111
taxonomical architecture, UDDI, 133
TCO (Total Cost of Ownership)

see also cost of ownership.
ERP with Web Services, 98
Microsoft and Java based systems, 269

Technical Architecture Specification, ebXML, 232
technical benefits of Web Services and ROI, 16
technical models

publishing UDDI fingerprints, 137
WSDL interfaces at UDDI, 123

technological novelty of Web Services as risk, 20
technology infrastructure and STP, 182
technology issues, ERP, 94
testing for interoperability, 214
testing laboratories, Web Services, 35, 312
threats to Web Services adoption, 29

Application Service Providers, 29
charging for services, 30
charging mechanisms, 32
customer trust, 31
.NET dependence, 32

Tibco
ActiveEnterprise integration broker

message bus architecture, 74
support for Web Services, 81

ActiveEnterprise, -Portal and -Exchange integration
brokers, 60, 71

time value of money, 10
Tivoli Policy Director, 107
toolkit developers, Web Services, 36
Total-e-server, Hewlett-Packard, 253
tourism suitable as an eMarl<etplace, 122
TPA (Trading Partner Agreement)

IBM Web Services architecture stack, 242
WSFL specification and, 168

Tracking Process
e-logistics process, 103
Web Service provided by ELPIF, 107

TractionMinder, Netegrity, 298
trade information and STP, 182

343

www.manaraa.com

trading partners

trading partners see business partners.
training requirements and ROI, 15
transaction management

BPML support for, 169
BPSS support for, 163
business process standards required feature, 160
cross-enterpise transactions and eMarketplaces, 139
distributed transaction management, B2B, 64
ensuring non-repudiation, 160, 164, 166
essential features of B2Bi solutions, 59
Web Services Intermediary aggregation service, 204
WSFL support for, 167
XLANG support for, 165

transactional integrity and integration brokers, 77, 79
transactions and service context and Web Services

Intermediaries, 206
transport layer, generic Web Services stack, 161
transport protocols, WebServices.org, 241
transportation broker, ELPIF, 108, 113
transportation Industry see shipping services.
troubleshooting, 312
trust

importance of, for Web Services customers, 31, 215
trusted intermediaries, 206, 215
trusted managers, Web Service Networks, 66
trusted providers, Web Services, 297

Trusted Solaris operating system, 301
Try and Buy

ERP implementations, 89
Information Integration/Exchange architecture and, 94

Web Services, 27

u
UDDI (Universal Description Discovery and Integration)

compliance of software vendors, 240
data integrity research, 218
directories usable with, 240
distinct registries for internal and external Web Services,

81, 195
ebXML Registry Service Interface compared to, 234
eMarketplaces based on, 117, 124

cost reductions from, 121, 134
fingerprints, 136
history of development, 122
integration brokers connectivity, 79
PeopleSoft use of, 93
private registry use by B2Bi/Web Services example, 65
private registry use by integration broker/Web Services

example, 80
proposed product classification, 133
publishing and inquiry APis, 121, 123
publishing Web Services via, 2, 259
real estate industry use of Web Services, 148, 149
registries, validity of entries, 209
registry interface, 125
registry use by ELPIF, 102, 105, 113
registry use by VASS, 209
risk of customer disillusion, 218
SAP use of, 93
security policies of UDDI Committee, 293
static and direct UDDI categories, IBM, 243
taxonomical architecture, 133
value added service suppliers and, 207
Web Services programming model and, 230
WSDL interfaces not mandated, 128
WSIL and, 263

344

UDDI Business Registry, 240
UDDI Newsletters, 210
UDDI publishing API calls

Delete Binding, 136
Delete Business and Delete Service, 135
Delete Technical Model, 136
Save Binding, Save Business and Save Service, 135
Save Technical Model, 136

UML (Unified Modeling Language), 302
EDOC based on, 171
graphical process modeling based on, 163

UNSPSC (Universal Standard Products and Services
Classification), 133

UPS (United Parcels Service of America) OnLine XML tools
deployed service information screenshot, 110
e-logistics example using, 107
ELPIF example, 101
integration architecture diagram, 108

usability of UDDI inquiry/search interface, 126
user interface encapsulation, 47, 65
user productivity and ROI calculations, 18
user-centric Web Services, 277

v
VAN (Value Addressed Networks), 196
VAS (Value Added Service) examples, 208
VASS (Value Added Service Suppliers), 207

business plan, 207
industry- or country-specific, 218
potential revenue streams, 211

vendors
support for Web Services, 231

ROI calculations and, 16
supporting ebXML, 227
supporting Web Services, 34, 232
Web Services creation tools, 154

vertical exchanges
e-commerce model, 119
effect of defining UDDI fingerprints, 138

Virtual Vault, HP, 297
operating system security and, 301

viruses and virus hoaxes, 308
Visual Basic .NET

object-orientation and, 268
WebMethod attribute, 239

Visual Studio .NET
Java IDE and, 268
.NET Web Services development tool, 279
superior Web Services support, 282, 285
use of Web Services, 93, 262

Vitria BusinessWare integration broker, 60, 71
hutrand-spoke architecture, 73
support for Web Services, 81

VPN (Virtual Private Networks), 183, 196

w
W3C (World Wide Web Consortium)

see also SOAP; WSDL.
security specifications for Web Services, 139
SOAP status, 132
W3C Web Services Workshop, 243

architecture stack, 245
complexity, 255

XML Protocol Group, 327

www.manaraa.com

WACC (Weighted Average Cost of Capital), 10
watching function, VAAS, 208
Web Application Server, SAP. 286
Web Service Broker, Oracle, 249
Web Services brokers see integration brokers.
Web Service Networks, 66

procurement example modified to use, 67
Web Services Architect UDDI research, 218
Web Services Auditors, 216, 217
Web Services Framework see Oracle.
Web Services industry business architecture, 212
Web Services Intermediaries, 201

B2Bi Web Services and, 68
core functionality, 205
defintion and configurations, 201
high level architecture, 205
issues to be aware of, 205
services provided, 202
standardization, 206

Web Services stacks, 161, 23 7
see a/so architectures
complexity of, from different organizations, 238
diagram, 292
IBM, 242
prospects for standardization, 255
Stencil Group, 241

emerging and core layers, 241
supporting levels, 300
W3C Web Services Workshop, 243
Web Services Intermediaries and, 205
WebServices.org, 238

Web Services Toolkit, SQL Server 2000, 279
web sites mentioned

15022.org, 187
allesta.com, 28, 31
aspentech.com sell-side eMarketplaces, 119
brinkster.com, 216
buy.com

conventional eMarketplace, 133
online procurement portal, 119

csrc.nist.gov, 308
eccma.org, 133
esteel.com vertical exchange example, 119, 138
fixprotocol.org, 185
fpml.org, 185
gfisoftware.com, 309
gocsi.com, 308
homegain.com site, 145, 146
improvenet.com site, 145
lighthouse-partners.com, 187
line56.com, 4
ltsbcf.co.uk, 4
microsoft.com, 324
networkice.com, 309
oasis-open.org, 139
opengroup.org web site, 112
paperspace.com vertical exchange example, 119, 138
passport.com, 203
priceline.com site, 145
real estate industry sites, 145
salcentral.com, 28, 212

Web Services directory, 207, 216
UDDI data integrity research, 218

sans.org, 309
serviceforge.com, 27
ups.com e-commerce site, 101
verticalnetmarketplaces.com, 117
webservicebuy.com, 27, 28, 32

WSEL (Web Services Endpoint Language)

WebServices.org
architecture stack, 238
business issues, 241
workflow, discovery and registries level, 239
messaging layer, 240

webservicesarchitect.com, 126
webservicewatch.com, 31
whitemesa.com and SOAP interoperability, 132
Windows update site, 308
xmethods.com, 28, 207, 216

SOAP interoperability, 132
WebBroker integration broker, 71
WebLogic server, BEA Systems

security aspects, 297
support for Web Services creation, 154
Web Services enabled J2EE server, 280

WebMethod attribute, Visual Basic .NET, 239
webMethods B2B Enterprise integration broker, 60, 71, 297

hub-and-spoke architecture, 73
on Web Services architectures, 238
support for Web Services, 81

WebSphere see IBM Web Services.
WebSphere Application Server 4.0, 243
WebSphere Business Integrator, 243
WebSphere Studio Technology Preview, 243
Windows update site, 308
Windows XP security aspects, 301
wire stack, W3C Web Services Workshop, 243
workflow

automation using BPM for internal STP, 180
BPML support for, 169
BPSS support for, 163
business process standards required feature, 159
integration brokers should support, 79
requirement for EAI Web Services, 49
WSFL support for, 167
XLANG support for, 165

workflow level, Web Services
security aspects, 293

workflow, discovery and registries level, WebServices
.org, 239

W5-* layers, Microsoft GXA, 245
WSBANG (Web Services Broker and Network Gateway), 299
WSCA (Web Services Conceptual Architecture), IBM, 242
WSCL (Web Services Conversational Language), 240
WSDL (Web Services Definition Language)

binding options, SOAP only currently available, 130
compared to the ebXML CPP, 234
defining Web Services invocation modes, 188
eMarketplaces, role of WSDL, 124
interface, eMarkeplaces, 128
interoperability and remote references, 329
programming model for Web Services and, 230
real estate industry use of Web Services, 148, 149
sample interface illustrating WSDL grammar, 129
sample UDDI fingerprint, 137
specification and client callbacks, 328
stock-quote example document, 260
Web Services description technology, 2, 258, 259
WSFL as extension to, 239
WSFL use, 167
XLANG use, 165

WSDP (Web Services Developer Pack), Sun, 280
WSEL (Web Services Endpoint Language), IBM, 242

W3C service capabilities layer and, 244
WSFL use for QoS characteristics, 167

345

www.manaraa.com

WSFL (Web Services Flow Language), IBM

WSFL (Web Services Flow Language), IBM, 242
business process standards and, 160, 167
Web Services and B2Bi, 64
Web Services for STP, 187
XLANG and, 238, 239

WSIL (Web Services Inspection Language), 263
Microsoft GXA and, 246
shipping services carriers and, 102
W3C Web Services Workshop and, 244

WSML (Web Services Meta Language), 260
WSTx project, IBM, 167

X
X.25 protocol, 197
XACML (XML Access Control Markup Language}, 294
X-KISS (XML Key Information Service), 295
XKMS (XML Key Management Specification}, 295
X-KRSS (XML Key Registration Service), 295
X LANG

business process standards and, 160
orchestration layer, 165

three-party contract diagram, 166
use by BizTalk server 2000, 239
Web Services for STP, 187
Web Services workflow level language, 293
WSFL and, 238, 239

XML (Extensible Markup Language)

346

see a/so BPML; cXML; ebXML; FpML.
advantages over SWIFT, 196

bandwidth requirements and, 15
basis of B2B ED\, 122
coexistence with SWIFT, 196
disadvantages compared with EDI, 15
disadvantages compared with SWIFT, 15, 196
encoding remote reference data, 326
Oracle9i Web Services can map HTML to, 252
Request; Response templates, e-logistics example, 109
role in B2Bi, 63
security, 294, 295
UDD\ publishing API, 123
Web Services and remote references, 319
Web Services implementation technology, 258
XML Encryptoin and XML Digital Signatures, 139

XML Protocol Group, W3C, 206, 327
XMLP (XML Protocol) as Sun ONE architecture

recommendation, 248
XPath, 167, 169
XSOAP/SoapRMI and interoperability, 328

y
Y2K, 316

z
ZDNet UK Tech update channel, 283

